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Abstract. A nonlinear forecasting method was used to
predict the behavior of a cloud coverage time series
several hours in advance. The method is based on the
reconstruction of a chaotic strange attractor using four
years of cloud absorption data obtained from half-
hourly Meteosat infrared images from Northwestern
Spain. An exhaustive nonlinear analysis of the time
series was carried out to reconstruct the phase space of
the underlying chaotic attractor. The forecast values are
used by a non-hydrostatic meteorological model ARPS
for daily weather prediction and their results compared
with surface temperature measurements from a meteo-
rological station and a vertical sounding. The effect of
noise in the time series is analyzed in terms of the
prediction results.

Key words: Meterology and atmospheric dynamics
(mesoscale meteorology; general) — General (new fields)

1 Introduction

The accuracy of Earth radiation budget estimates is
highly dependent on how well cloud variability is taken
into account. Because of its dynamic nature and
pronounced optical characteristics, cloud cover is one
of the most important variables affecting the radiation
balance, which, for example is determinant for disper-
sion modeling of pollutants and, ultimately, the global
climate, among other effects.

Standard meteorological models are based on finite
difference solutions of the hydrothermodynamical equa-
tions. Among the different parameterizations that are
taken into account in these models, subgrid-scale cloud
dynamics must be implemented in order to describe its
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influence in the atmospheric flow and pollutants trans-
port (Donner, 1993; Gimson, 1997; Modlders et al.,
1994). The degree of sophistication of cumulus param-
eterizations for weather forecasting varies widely, ac-
cording to the computer resources needed for the host
model, and the complexity of physical and chemical
processes that the model is required to describe. That is,
the parameterized clouds may be diagnosed under some
assumptions regarding their areas, mass fluxes, and
entrainment rates, or more closely linked to the host
model dynamics. They may be in a steady-state balance
or evolve in time, depending on the time step of the host
model. Then, to describe the effect of cumulus convec-
tion, model resolution must be sacrificed to limit
computational costs, and cumulus effects must be
parameterized.

Here, we have tried to combine two different points
of view of analyzing meteorological data, namely: the
standard atmospheric circulation models and a new
approach based on the analysis of time series data of
physical observations, whose dynamics exhibit irregular
or chaotic behavior. The latter case, which may be called
nonlinear time series analysis, explores the possibility
and the extent to which the dynamics generating this
time series is deterministic, i.e., occurs on a low-
dimensional chaotic attractor. The main idea is that
the aperiodicity in the data is not due to stochasticity
but due to nonlinearity. The study of irregular time
series data by means of nonlinear methods has become a
popular task within the last years. Nonlinear time series
analysis is described in two recent monographs; one by
Abarbanel (1996) and one by Kantz and Schreiber
(1997) as well as in several reviews, including Grassber-
ger et al. (1991), Abarbanel er al. (1993), Schreiber
(1999) and Hegger et al. (1999)!. Moreover, under
appropriate conditions the phase space corresponding to
the low-dimensional attractor can be reconstructed such
that it predicts the future using a local forecasting
function computed from the attractor. The main idea is

I'See also http://www.mpipks-dresden.mpg.de/~tisean.



1350 V. Pérez-Muiiuzuri, I. R. Gelpi: Application of nonlinear forecasting techniques for meteorological modeling

that for deterministic systems, points which are close in
the reconstructed phase space stay close under forward
iteration.

In this paper, techniques of nonlinear analysis are
applied to a time series of semi-hourly cloud absorp-
tion values obtained from infrared Meteosat images
during the last four years for cloud coverage forecast-
ing. The predicted cloud absorption values are then
used by a meteorological model for weather forecast-
ing. Previous results with a shorter time series of data
were presented in two former papers by Souto et al.
(1998) and Pérez-Munuzuri (1998), where the effect of
cloud coverage in plume dispersion modeling in
Northwestern Spain was studied in detail. Here, in
Sects. 2 and 3 we will focus on the nonlinear analysis
of the four year time series of cloud absorption values.
To avoid verbosity, the derivation of the methods will
be kept to a minimum. The use of the predicted cloud
absorption values for weather forecasting by using a
non-hydrostatic meteorological model is presented in
Sects. 4 and 5.

2 Nonlinear prediction

We have collected a time series of cloud absorption
values ¢ during four years from semi-hourly Meteosat
infrared images from Northwestern Spain (Fig. 1) in
order to predict £. We obtain a single average value of
the cloud cover over the area of interest (Galicia) from
these images. Values range from 0 to 1 where & =1
means that no radiation is emitted from the surface. For
clear skies, the stored value is close to zero; intermediate
values depend on cloud thickness and water phase and
content. Values of &(¢) could also be considered to
depend on the grid position (x, ), but this would require
higher precision satellite images than those available
from Meteosat. Furthermore, the noise in the time series
increases with a finer image resolution, which decreases
the precision of the nonlinear forecasting method
described below.

Fig. 1. Infrared Meteosat image of the Iberian Peninsula correspond-
ing to July 26, 1999 (12:00 UTC)

In the following, the cloud dynamics is supposed to
belong to the category of dissipative system dynamics,
which can reveal dynamics with strange attractor
structure. The Lyapunov exponents determine how far
into the future a successful forecast can be made and the
number of variables needed to make the prediction is
governed by the fractal dimension (Grassberger and
Procaccia, 1983; Wolf et al., 1985). The general nonlin-
ear prediction method is to reconstruct the strange
attractor from the set of data in a minimum embedding
space dictated by the correlation fractal dimension and
then predict the future using a local forecasting function
computed from the attractor (Farmer and Siderowich,
1987; Casdagli, 1989; Abarbanel et al., 1993; Abarbanel,
1996). Takens (1981) has proven that, after embedding,
and if the embedding dimension m and time delay t are
chosen appropriately, there exists a smooth map % such
that

Copr = F(Bn) (1)
where Z, is a vector of data points defined by
E, = (ém énJrra sy énnt(mfl)r) (2)

and 7 is the number of data points in the time series and
T is the forecasting time.

The meaning of the theorem is that, under some
general conditions, the orbit followed by E, in this m-
dimensional embedding space will differ from the actual
solution of # (E,) in Eq. (1) only by a smooth change of
coordinates. The most common solution of Eq. (1) is to
compute the Jacobian of the strange attractor in the
vicinity of a target point and then use it to predict the
future of that point. Typically, one finds two to five
times the minimum number of nearest neighbors Np
needed to compute the Jacobian and makes a least
squares fit using the nearest neighbors and their future
iterates to compute the prediction function &. This
must be repeated for every target point. The procedure
consists of the following steps?:

1. Choose an embedding time delay 7 using the
mutual information (Fraser and Swinney, 1986) defined
as,

(==Y py 220 3)

i Pipj

where p; is the probability to find a time series value in
the i-th interval, and p;;(7) is the joint probability that an
observation falls into the i-th interval and the observa-
tion 7 later falls into the j-th. Unlike the autocorrelation
function, the mutual information also takes into account
nonlinear correlations. It can be shown, that if the time
delayed mutual information exhibits a marked mini-
mum at a certain value of 7, then this is a good
candidate for a reasonable time delay to reconstruct the
phase space of the chaotic attractor.

2 See Hegger et al. (1999) for a practical implementation of these
nonlinear time series methods through the use of the TISEAN
package and their proper usage.
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2. Choose an embedding dimension m using the false
nearest neighbor method (Kennel e al., 1992; Hegger and
Kantz, 1999). The idea of this method is the following:
For each point E; in the time series look for its nearest
neighbor Z; in an m-dimensional space. Calculate the
distance ||E; — E,||. Iterate both points and compute,

R; = ||E‘i+1 - ‘E‘f+1|| (4)
1B — &)l

If R; exceeds a given threshold R, this point is marked as
a false nearest neighbor. The criterion to consider the
embedding dimension high enough is that the number of
points verifying R; > R, is zero or, at least, small enough.
In other words, the false nearest neighbors are the
nearest neighbors on an attractor that arrive near each
other by projection because the attractor is being viewed
in a space dimension too low to completely unfold it.

3. Construct a vector E; by using Eq. (2).

4. Find the Np nearest neighbors E; of Z; (j < i) that
minimize ||Z; — &/

5. Select a forecasting time 7.

6. Order the neighbors from closest to furthest, and
find an affine model in the following form (Farmer and
Siderowich, 1987),

- -1
&y =20+ o iy
s=1

where 67 ;) is the jth coordinate of the /th nelghbor of
Ey_q for a time series consisting of N — 1 data, and f )
is the ]th coordinate of the point of the attractor to
which é goes in one time step. The coefficients
o, - - ocm are the parameters of the model, computed by
ordmary least squares Then, to forecast a new point of
the attractor & N+ we use éN“ =op+ Yo ocséN (s—1)e>
and the process is repeated T steps ahead.

To evaluate the accuracy of the nonlinear predic-
tions, the normalized root-mean-square error (RMSE)
(Farmer and Siderowich, 1987) is used,

. A\271/2

E= [Zi(épred(l) - é(l)) ‘| (6)

= ——
>i(E) -9

where &;req(7) is the predicted value of the measured £(i),

¢ is the mean of the time series during the forecasting

period of time. If E =0, the predictions are perfect;

E =1 indicates that the performance is no better than a
constant predictor &,eq(i) = £.

3 Chaotic analysis of the experimental time series

Figure 2 shows the time series of values of cloud
coverage ¢&(¢) obtained from the Meteosat during the
last four years (from August 1995 to August 1999). The
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Fig. 2. First row: cloud absorption & series of semi-hourly measure-
ments in north-western Spain (Galicia) obtained from the Meteosat
and consisting of 73 000 points of data (approximately 4 years). The
time series begins on August 1995, where day 1 is 1 January 1995.
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Second row: from left to right; power spectrum of the full series, the
autocorrelation coefficient, showing evidence of “recurrence” for
periods of one year, and evidence of stationarity of the full time series
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chaotic character of the time series is revealed by the
broad band form of the power spectrum. Our results
suggest that the time evolution of the data is governed
by a strong deterministic component. Although, the
high-frequency part of the spectrum is dominated by the
daily frequency w; = 1/24h_1, it is also possible to
observe a continuous band of frequencies which departs
from the low-frequency part of the spectrum. This is
where the annual frequency (wy = 1/8760 h™!) of our
data lies, which forms the large ‘‘sine-wave’ variation
observed in the time series. These periodic behaviors are
not so dominant as to lead us to consider the cloud
coverage series as an annual and daily cycle with some
small background chaos or noise imposed on it. Instead,
we have some dynamics driven by periodic external solar
forcing. Note as well that the time series reveals that the
winter of 1995/1996 was particularly bad since cloud
coverage reached its higher values, mainly because the
European area was blocked for most of the winter with
wind coming from the east, and very cold temperatures.

The autocorrelation function 4(t) of our series, i.e.,

AW =3 DG G )

where & = ¢ —ﬁZf\; 1 &, does not decay very rapidly
supporting the 1dea that our data contains a noise
component (Bountis et al., 1993). Besides, the time scale
associated with the first zero crossing of the autocorre-
lation function gives a time at which variations of the
cloud coverage ¢ are linearly decorrelated (v = 83 days).
A time delay reconstruction of the phase space using this
large time scale as the lag would quite likely reveal little,
since this is clearly too long for any dynamical

correlations in this system to persist. In sharp contrast,
the mutual information 7(t) discussed later will reveal
new possibilities.

Stationarity is a necessary condition when the time
series corresponds to the dynamic evolution on a strange
attractor. Hence, the stationarity of the time series is
tested by plotting the probability density function for
the first 60 000, 65 000, 70 000 and the whole set of
73 000 points, with the average & and the standard
deviation o of the data given in Table 1. Note that
there are no significant time variations in that quantity.

The mutual information /(t) and the fraction of false
nearest neighbors are shown in Fig. 3a, b, respectively.
Mutual information I(t) shows a clear first minimum
for © = 34 or times of about 17 hours. Using a time lag
T = 34, we use the whole data set to find out the fraction
of false nearest neighbors (FNN) and to determine the
minimum embedding dimension. Note from Fig. 3b that
there is a sharp drop at m = 8 after which the fraction of
FNN remains equal to zero. The strength of this
conclusion is enhanced when we see that varying the
Theiler window (Hegger et al., 1999) over the range
[0,2000] changes nothing but the detailed number of
FNN at dimensions m < 8. For m > 8 the fraction of

Table 1. Average value of the cloud absorption ¢ and the standard
deviation o¢ for different time series lengths N

N é o:

60 000 0.481 0.079
65 000 0.485 0.078
70 000 0.486 0.077
73 000 0.487 0.076

Fig. 3. First row (a, b): the av-
erage mutual information /(t)
and the fraction of false nearest
neighbors (FNN). Here, three

values of the Theiler window
were used; w = 0 (solid line),
w =100 (O) and w = 1000 (x).
Second row (¢, d): estimation of
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the maximal Lyapunov exponent
Amax and the correlation dimen-
sion D,. In the first case, the
straight line indicates

Amax ~ 0.014 and the conver-
gence of the Lyapunov exponent
for m > 8 is shown. In the same
way, the correlation dimension is
shown to converge to the same
value for m > 8. Parameter val-
ues: R; = 10 and the time win-

dow to supress correlated
neighbors has been set equal to
€ 100
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FNN is always zero except when the Theiler window
approaches the zero value then, the fraction of FNN
remains nearly zero within the interval 8 <m < 13. In
order to calculate the FNN of a given point in the
embedded phase space, the distances between phase
points of the attractor must be calculated over a set of
points (usually the whole time series) drawn indepen-
dently according to the invariant measure of the
attractor. Successive elements of a time series are not
usually independent. Theiler suggested in 1990 that, in
order to remove this spurious effect, all points whose
time indices differ by less than the Theiler-window w
(where w should be chosen generously) should simply be
ignored. If the time delay T = 83 days suggested by the
autocorrelation statistic is used, a very high dimension
would be predicted for the embedding. This is clearly a
numerical artifact of the very large t and comes from the
intrinsic instabilities in the system which are associated
with the presence of chaos.

The final characteristic of the data we determine is
the largest Lyapunov exponent Ay,x and the correlation
dimension D, shown in Fig. 3c—d, respectively. For
sufficiently small length scales ¢ and when the embed-
ding dimension m exceeds the correlation dimension of
the attractor Dy, C(m,€) o< €. Note in Fig. 3d that the
slope of log[C(m, €)] versus log(e) tends to converge for
m up to 8, in agreement with previous results obtained
with the fraction of FNN. The slope D,(m) saturates as
m increases at the value D, = 2.9. On the other hand,
according to the embedding theory, the saturation value
of the slope in the scaling region, as m increases,
supports the existence of a low-dimensional attractor
with fractal dimension D, =2.9 and m > 2D, (Sauer
et al., 1991).

Chaotic time series taken from experimental systems
are always contaminated by some (usually unknown)
level of noise, both observational and dynamical. With a
finite amount of data, the estimated correlation dimen-
sion could be at least equal to that obtained for the
original series. We need then to distinguish chaos from
noise, or in other words to detect a nonlinear structure
in the time series by showing that the time series is
inconsistent with a linear stochastic process. One
important method in this context is the method of
surrogate data (Theiler ez al., 1992; Bountis et al., 1993).
The main idea of this method consists of comparing
results, for example the calculated correlation dimen-
sion, for the original time series to randomized data
subject to a given constraint. Then, surrogate data can
be obtained by permuting the data randomly without
replacement or, to maintain a given spectrum, by
permuting the random phases and taking the inverse
Fourier transform. In both cases, for a large number of
realizations of the random processes, we observe that
the correlation dimension of the surrogate data behaves
differently from the original series; it shows no tendency
to saturate but continues to increase with increasing m.
This clearly implies that the original time series shown in
Fig. 2 corresponds to a nonlinear structure of low
dimensionality, even though it contains a small noise
component.

The estimated values of Ay.x [shown as the slopes of
S(m,t) versus ¢ in Fig. 3c] also converge for m > 8 to the
value Apax &~ 0.014 in inverse units of the sample time
equal to half an hour. Since the predictability time is
about /_! this means that models for the cloud
coverage factor should allow prediction for about 1.5
days from any given time before the intrinsic instabilities
of the system mask any such ability.

The analysis of the cloud absorption time series
showed the chaotic characteristics of our data, so we
were able to construct a predictor map for our series
using the method described in Section 2. This method
forecasts the daily amount of cloud absorption several
hours in advance from the time series shown in Fig. 2.
Then, the resulting forecast is used as an input to the
meteorological model that is used to calculate the wind,
temperature and humidity fields in the area of interest.
In the present study, we have selected the last and first
weeks of July and August 1999 respectively (from days
1660 through 1675), for research purposes. The first
three panels of Fig. 4 show the predicted values of ¢&
(dashed line) compared with the measured values
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Fig. 4. Forecasting values of cloud coverage (dashed line) compared
with the real time series obtained from the Meteosat (solid line). The
three upper panels correspond to predictions done with the nonlinear
model depicted in Sect. 2 when predictions are made 6, 12 or 24 hours
in advance, while the last panel corresponds to predictions done with
the AR model (p = 10), Eq. (8). Parameter values for the nonlinear
model: 7 = 34, m = 8 and Nz = 3(m + 1) nearest neighbors
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obtained from the Meteosat (continuous line) when
predictions are made 6, 12 or 24 hours ahead. Most of
the large oscillations in the time series were reproduced
by our nonlinear forecasting method independently of
the forecasting period. Note that for the same time step,
the predicted values of ¢ can change depending on the
forecasting period 7, since the coefficients of the model,
o, . .., 0y, in Eq. (5), are recalculated at each forecasting
step using the new predicted values of the cloud
absorption.

The calculated RMSE of the cloud absorption
forecasting [Eq. (6)] increases with the number of hours
ahead the prediction is needed as expected for a chaotic
system. Thus, the histograms shown in Fig. 5 reveal that
for predictions made 6 hours ahead, the percentage of
predictions whose forecasting error is lower than 0.25 is
about 75%, while this value is drastically diminished
when the forecasting is made 24 hours ahead. In the
following Sections, we will investigate the use of these
predictions in a meteorological model for mesoscale
weather forecasting.

At this point, it is worth to figure out if the
deterministic approach followed above is the most
appropriate to explain irregularities in the time series.
The traditional approach given by the time series
literature is that external random influences may be
acting on the system. The external randomness explains
the irregularity, while linear dynamical rules may be
sufficient to explain the structure found in the sequence.
One of the most general linear (univariate) models is the
autoregressive AR(p) process (Box and Jenkins, 1968,
1970), given by,

p
én'_ E:: 2{:“i(5n—i_'z)4‘nn (8)
i=1

where 7, is a purely random process with mean zero and
¢ = 0.487 is the mean value of the time series £. The last
panel of Fig. 4 shows the cloud coverage prediction
compared with the real one after fitting the first
N = 73000 data of the time series to the polynomial
function® given by Eq. (8) with p = 10. In this case, the
obtained RMSE was equal to 1.05, so the forecast was
no better than a constant predictor, as happens when
using the average value of the time series. Note from the
figure, that still the AR model prediction is able to
follow the trend of the series but the nonlinear
deterministic behavior is lost. Thus, for example, the
diurnal cycle in the cloud coverage dynamics is lost
when using this model, while this did not happen with
the nonlinear model whose results are shown in the first
three panels of Fig. 4.

4 Surface temperature model

A non-hydrostatic meteorological model was applied to
A Coruna city area (north-west of Spain, near the

3 For p > 10 the residual sum of squares does not give better results
than for p = 10.
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Fig. 5. Histograms of the RMSE when the forecastings are made 6
(a), 12 (b) and 24 (c) hours ahead, for the periods of days shown in
Fig. 4

Atlantic Ocean). Figure 6 shows the topography of the
area (7.0 km x 6.5 km). The center of the computational
domain is located at 43°22'N and 8°25'W. The region of
interest is mainly influenced by northeastern and
southwestern winds. The meteorological model provides
three-dimensional fields of wind, temperature, humidity,
and turbulence. The mesoscale meteorological model
used is a modified version of ARPS (Xue et al., 1995)
(Advanced Regional Prediction System) developed by
CAPS (Center for Analysis and Prediction of Storms) in
Oklahoma (USA). A specific sea-surface physics param-
eterization (Pérez-Mufuzuri, 1998) has been incorpo-
rated in order to achieve a better description of the
circulating flows at the coastline. The Durran and
Klemp (1983) open boundary condition option is chosen
for the lateral boundaries. The 1.5-order Turbulent
Kinetic Energy (TKE) closure scheme is used for
subgrid-scale turbulence parameterization. The horizon-
tal grid spacing is 300 m and 25 vertical levels following
the terrain are used. Vertical model domain extends to 5
km with grid stretching. The minimum Az used near
ground is 3 m. The horizontal grid spacing smooths the
complex orography of the city (streets, squares, etc) and
prevents the model from using detailed parameteriza-
tions for a city environment. Nevertheless, the main air-
flow characteristics over this region are preserved under
this assumption.

Cloud cover affects the radiation balance, which is a
determining factor for a good description of the
meteorological variables. Although the microphysics
parameterization implemented in ARPS model was
turned on, an explicit model for cloud prediction was
found to be unsatisfactory due to the small size of the
domain and its high resolution. Then, to describe the
effect of clouds over the domain, cumulus effects must
be parameterized to limit computational costs, so the
forecasting model for cloud formation based on non-
linear chaotic predictions described above was coupled
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+  Fig. 6. Topography of the numerical do-
main corresponding to A Coruia city.
Labels S and M (Dique Barrié¢ de la Maza)
correspond to the location of the rawisonde
and surface meteorological station from the
National Weather Institute and the surface
meteorological station within the A Corufia
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to the ARPS model. At this point, it is interesting to
note that the cloud coverage time series was obtained
from the Meteosat infrared images for a larger area
(dashed-line box in Fig. 6) than the one considered for
the ARPS model. Thus, the predicted cloud coverage is
an average value of cloud cover inside and outside the
boundaries of the model.

The ARPS is initialized at 0Z with radiosonde data
provided by the Spanish Meteorological Office obtained
at site location S in Fig. 6, within the computational
area. The computations extended for 24 hours and the
time step used in the meteorological model was 5 s.

Soil temperature was initialized uniformly using the
surface value given by the sounding and the sea-surface
temperature was assumed to be two degrees higher. The
initial moisture within the soil was 0.6 times that of the
saturated value for each type of soil. The surface
temperature and moisture are updated by the time-
dependent soil-vegetation model based on Noilhan and
Planton (1989) and Pleim and Xiu (1995). In this model,
the surface net radiative flux for the ground-air RY™¢
(Deardorff, 1978; Xue et al., 1995) and the sea-air R;™¢
(Portela and Neves, 1994; Pérez-Muiiuzuri, 1998) inter-
faces are given by,

RI = (1+ 4120 + BE(0)
x (1- ocg)rrgﬂ:vao(a/r)2 cosZ

+ a(ea(l —i—A“g]fz(f) "‘Bgé(t))T: - 69T;> ©)

B = (14 4,80 + BE) (1 - ) Asocos 2
+a(1075(1+A58(0) + BSE()TE — T (10)

where the first and second terms in both equations
account for the shortwave and longwave radiation
terms, respectively. Term ¢ is the sum of the cloud-top

! Port facilities, respectively. The x- and y-axes
are oriented in the west—east and south—
north directions, respectively

albedo and in-cloud absorption by cloud droplets; & can
change with time and it is obtained from the time series
described in Sect. 2. Clouds are assumed to be in one
layer at a height which is the average height weighted by
the amount of each layer observed from the surface.
Table 2 shows the values of parameters 47" and BY*
(i=1,2) in Egs. (9, 10) obtained after fitting the
predicted surface temperature with data obtained from
a surface meteorological station (dot labeled M in
Fig. 6) for the most typical meteorological situations
occurring in the area of interest.

Finally, the ground- and sea-surface temperatures are
calculated by the following equations,

o7, o 2n

5, = Cr(R™ = 0 = 0%) =5 (T, — T) (1)
67; CS S—a

ot :#(Rn _QYH_QSE) (12)

where the last term in Eq. (11) includes the effect of
conduction from the ground below the interface. It
avoids the problem of computing temperatures at a
number of levels beneath the surface. Parameters QF;
and QF" are the sensible and latent heat fluxes respec-
tively, and parameterizations given by Xue et al. (1995)
and Pérez-Muiiuzuri (1998) were used. Besides Eqs. (11,
12), the soil-vegetation model used by ARPS includes
other equations for soil-surface, deep-soil and canopy
moistures (Xue et al., 1995).

Table 2. Coefficients used in Egs. (9, 10) for Fig. 8

Surface type A, B, A, B,
Ground -1 -1 -1 -1
Sea -0.65 0 0.17 0
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5 Meteorological results

In this Section, we have selected August 8th, 1999 from
the time series shown in Fig. 4 to avoid redundancy in
the presentation of the meteorological results. During
this day, moderate temperatures (around 21 °C during
all of the day) and overcast conditions with some light
rain affected the region of interest. As a consequence of
a low-pressure area located near Great Britain, SW
winds affected northwestern Spain during all of the day.
Figure 7 shows the solar radiation and 2-m height
surface temperatures measured at sites S and M (shown
in Fig. 6). Note that during the afternoon, there was a
difference of approximately one degree between the sea
coast M and the city center S. Besides, the amount of
cloud became more pronounced at approximately 13Z
as is shown by the solar radiation and temperature time
series. So, the cloud dynamics was not exactly a classical
diurnal cycle as could be expected for the summer
season, but it showed up some “‘irregularities” as was
the case at noon.

The results of the ARPS model are compared in
Fig. 8 with real data obtained from the surface meteo-
rological station M and the sounding made at 12Z from
point S in Fig. 6, respectively. Model results are
obtained when the time series of measured cloud
coverage data obtained from the Meteosat are taken
into account. These results are also compared with those
obtained by a different run of the model where the effect
of cloud cover is not taken into account [£(f) =0 in
Egs. (9, 10)]. Note the good agreement between our
model results and the meteorological data obtained
from the surface station when the cloud coverage is
taken into account. The model reproduces well the
diurnal change in temperature due to the surface heating
and cooling which is also shown by the observational
data. To describe the accuracy of the method, the
standard deviation error (STD) was calculated between
the measured 2-m height surface temperature at the
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meteorological station Dique Barrié de la Maza and the
predicted one. Thus, when the cloud coverage is
considered, the measured error is 0.56, while for the
uncovered situation the obtained error is 2.07, nearly
four times greater.

Cloud coverage mainly modifies the vertical profiles
of temperature and humidity within the mixed boundary
layer, while wind speed and direction do not show
important variations in their profiles. In any case, the
behavior of all the represented profiles Fig. 8b—e does
not vary substantially whether cloud coverage is con-
sidered or not, and both modeled and measured profiles
show a good qualitative agreement. For example, the
potential temperature 6 profile (Fig. 8d) obtained from
ARPS shows a mixed layer depth approximately equal
to 900 m, which is smaller than the rawisonde measured
depth (=1200 m). The differences between the mixed
layer depths observed at the humidity profiles (Fig. 8e)
are similar to those seen at the 6 profile. Thus, in the
case of an atmospheric dispersion model coupled to the
meteorological model, the behavior of pollutants within
the mixed layer depends on whether cloud absorption is
considered or not to model the heat budget (Pérez-
Muiiuzuri, 1998).

In order to test the validity of our nonlinear
forecasting method when considered for meteorological
modeling, the effect of the forecasting period on the
prediction of the surface temperature was analyzed
when predictions are made 6, 12 or 24 hours ahead (see
Fig. 9a). The following standard deviation errors were
obtained for each period: 0.62, 0.55 and 1.19, respec-
tively. In any case, these errors were smaller than those
obtained without cloud coverage. Note that for inter-
mediate forecasting periods, the error is smaller than for
smaller and greater ones, and approximately equals the
value obtained above (Fig. 8a) when the real time series
from the Meteosat is used (STD=0.56). Nevertheless,
for all the forecasting periods considered the trend of the
curve is preserved as the nonlinear prediction of the
cloud cover factor &£(z) accounts for the 24-h periodicity
that is an essential part of the cloud cover and the
boundary layer dynamics. In this sense, trying to predict
beyond the instability horizon, that is for times greater
than /! ~ 1.5 days, our predictions should rapidly
lose accuracy and may not even account for the diurnal
cycle. This limit could be reduced if, for example, the
time series is contaminated by noise. The computations
reported above for the 24-h forecasting period support
this idea as the RMSE was found to be greater than one.

To examine the effects of noises on the nonlinear
forecasting, we performed another experiment consist-
ing of modifying the cloud cover time series used to
forecast the results shown in Fig. 8 by adding a white
Gaussian noise #n(¢f) with (5(¢)) =0 and (n(H)n(¢)) =
2Do(t — ¢'), and D the noise dispersion. In this case, the
surface temperature routine in the ARPS model was
modified to account for the effect of noise so equations
are then solved by using a modified Euler method
(Garcia-Ojalvo and Sancho, 1999). Figure 9b shows the
forecasted surface temperatures for two different values
of the noise dispersion D in comparison with real data
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Fig. 9. Comparison of the measured surface temperature at the
meteorological station Dique Barri¢ de la Maza (solid line) with the
predicted temperatures using a 6, 12 and 24 hours cloud coverage
forecasting period (a) and using a noisy time series of cloud
absorption values with D =0.05 (SNR =19.6) and D = 0.45
(SNR = 0.52) (forecasting period 7 = 12 h) (b) for 8§ August, 1999

obtained from the meteorological station within the
domain. The obtained values of the standard deviation
as a function of the signal-to-noise ratio* (SNR) are
shown in Fig. 10. For SNR > 10, the STD remains
approximately constant and equal to 0.56, while for
SNR < 10, the STD increases nearly exponentially as
SNR decreases. Thus, even using a noisy time series, for
cloud coverage forecasting, the ARPS model is able to
reproduce the meteorological conditions above some
threshold of the SNR.

6 Conclusions

A four-year long time series of cloud absorption values
obtained from semi-hourly Meteosat infrared images
has been used for meteorological forecasting. Our cloud
absorption time series has passed a number of tests for a
low-dimensional chaotic attractor which confirm that
the presence of noise does not overwhelm the intrinsic
nature of its deterministic dynamics. The results pre-
sented in this paper support this idea. Clearly, the low-

4 The SNR is calculated as 101log;o (3>, E(2)/ 32, 1 (£)).
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frequency part of the power spectrum containing the
daily 24-h period plays an important role in the low-
dimensional, deterministic appearance of the dynamics,
which turns out to be of high importance for its use in
meteorological weather forecasting. The coupling be-
tween the nonlinear forecasting model and the non-
hydrostatic meteorological model ARPS has been very
successful in predicting the temporal evolution of the
meteorological variables. Furthermore, the extension of
the forecasting period and a certain amount of noise
added to the cloud coverage time series did not affect the
meteorological predictions.

On the other hand, the nonlinear forecasting method
presented here reveals the possibilities of short-term
predictions of atmospheric parameters whose intrinsic
dynamics would make it very expensive, in terms of
computational resources, to solve a prognostic equation.

Finally, we wish to emphasize that the entire system
of forecasting models described here has been successful
in forecasting the most important plume impacts around
As Pontes Power Plant (northwestern Spain) since 1995
(Pérez-Muniuzuri, 1998; Souto ez al., 1998) and it is now
being used in the A Coruifia city area to forecast the
pollutant dynamics near a harbor.
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Appendix: notations

So Effective solar constant, 1376 W m—2
As Absorption by atmospheric gases
VA Solar zenith angle

Og.s Albedo of ground (g) and sea (s) surfaces.
oy = —0.0139 + 0.0467 tan Z
o Sensible heat fluxes for ground (g) and sea (s) surfaces
0% Latent heat fluxes for ground (g) and sea (s) surfaces
o Stefan-Boltzmann constant, 5.67- 1078 W m=2 K~
(a/r)* Squared ratio of average distance of the Earth from
the Sun to its actual distance at any time of the year
cy’ Ground (g) and sea (s) surface heat capacities

Try Transmittance after Rayleigh scattering and absorption
by atmospheric gases

T Water vapor transmittance

€q Emissivity of the atmosphere

€ Emissivity of the ground

H Mean depth of the sea coast (m)
Y Length of the day, 24 h
Ty Deep soil temperature (K)

T, Air temperature (usually calculated at the first level
of the model) (K)

T, Ground-surface temperature (K)

T Sea-surface temperature (K)

References

Abarbanel, H. D. 1., Analysis of observed chaotic data, Springer-
Verlag, Berlin Heidelberg New York Tokyo, 1996.

Abarbanel, H. D. 1., R. Brown, J. J. Sidorowich, and L. Sh.
Tsimring, The analysis of observed chaotic data in physical
systems, Rev. Mod. Phys., 65, 1331-1392, 1993.

Bountis, T., L. Karakatsanis, G. Papaioannou, and G. Pavlos,
Determinism and noise in surface temperature time series, Ann.
Geophys., 11, 947-959, 1993.

Box, G. E. P., and G. M. Jenkins, Some recent advances in
forecasting and control, I, Appl. Stat., 17, 91-109, 1968.

Box, G. E. P., and G. M. Jenkins, Time series analysis, forecasting
and control, Holden-Day, San Francisco, 1970.

Casdagli, M., Nonlinear prediction of chaotic time series, Physica
D, 35, 335-356, 1989.

Deardorff, J. W., Efficient prediction of ground-surface tempera-
ture and moisture, with inclusion of a layer of vegetation,
J. Geophys. Res., 83, 1889-1903, 1978.

Donner, L. J., A cumulus parameterization including mass fluxes,
vertical momentum dynamics, and mesoscale effects, J. Atmos.
Sci., 50, 889-906, 1993.

Durran, D. R., and J. B. Klemp, The effects of moisture on trapped
mountain lee waves, J. Atmos. Sci., 39, 2152-2158, 1983.

Farmer, J. D., and G. G. Siderowich, Predicting chaotic time series,
Phys. Rev. Lett., 59, 845-848, 1987.

Fraser, A. M., and H. L. Swinney, Independent coordinates for
strange attractors from mutual information, Phys. Rev. A, 33,
1134-1140, 1986.

Garcia-Ojalvo, J., and J. M. Sancho, Noise in spatially extended
systems, Springer-Verlag, Berlin Heidelberg New York Tokyo,
1999.

Gimson, N. R., Pollution transport by convective clouds in a
mesoscale model, Q.J.R. Meteorol. Soc., 123, 1805-1828, 1997.

Grassberger, P., and I. Procaccia, Measuring the strangeness of
strange attractors, Physica D, 9, 189-208, 1983.

Grassberger, P., T. Schreiber, and C. Schaffrath, Non-linear time
sequence analysis, Int. J. Bif. Chaos, 1, 521-547, 1991.

Hegger, R., and H. Kantz, Improved false nearest neighbor method
to detect determinism in time series data, Phys. Rev. E, 60,
49704973, 1999.

Hegger, R., H. Kantz, and T. Schreiber, Practical implementation
of nonlinear time series: the TISEAN package, Chaos, 9, 413—
435, 1999.

Kantz, H., and T. Schreiber, Nonlinear time series analysis,
Cambridge University Press, Cambridge, 1997.

Kennel, M. B., R. Brown, and H. D. 1. Abarbanel, Determining
embedding dimension for phase-space reconstruction using a
geometrical construction, Phys. Rev. A4, 45, 3403-3411, 1992.



V. Pérez-Muiiuzuri, 1. R. Gelpi: Application of nonlinear forecasting techniques for meteorological modeling 1359

Molders, N., H. Hass, H. J. Jakobs, M. Laube, and A. Ebel, Some
effects of different cloud parameterizations in a mesoscale model
and a chemistry transport model, J. Appl. Meteorol., 33, 527—
545, 1994.

Noilhan, J., and S. Planton, A simple parameterization of land
surface processes for meteorological models, Mon. Weather
Rev., 117, 536-549, 1989.

Pérez-Muiiuzuri, V., Forecasting of chaotic cloud absorption time
series for meteorological and plume dispersion modeling,
J. Appl. Meteorol., 37, 1430-1443, 1998.

Pleim, J. E., and A. Xiu, Development and testing of a surface flux
and planetary boundary layer model for application in meso-
scale models, J. Appl. Meteorol., 34, 16-32, 1995.

Portela, L. I., and R. Neves, Modelling temperature distribution in
the shallow Tejo estuary, in Advances in Water Resources
Technology and Management. Eds. G. Tsakiris, M. A. Santos,
Balkema, Rotterdam, 457-463, 1994.

Sauer, T., J. Yorke, and M. Casdagli, Embedology, J. Stat. Phys.,
65, 575-581, 1991.

Schreiber, T., Interdisciplinary application of nonlinear time series
methods, Phys. Rep., 308, 1-64, 1999.

Souto, J. A., V. Pérez-Muiiuzuri, M. DeCastro, M. J. Souto, J. J.
Casares, and T. Lucas, Forecasting and diagnostic analysis of
plume transport around a power plant, J. Appl. Meteorol., 37,
1068-1083, 1998.

Takens, F., Detecting strange attractors in turbulence, (Lecture
notes in mathematics, vol. 898) Springer-Verlag, Berlin Heidel-
berg New York Tokyo, 1981.

Theiler, J., Estimating fractal dimension, J. Opt. Soc. Am. A, 7,
1055-1073, 1990.

Theiler, J., S. Eubank, A. Longtin, B. Galdrikin, and J. D. Farmer,
Testing for nonlinearity in time series: the method of surrogate
data, Physica D, 58, 77-94, 1992.

Wolf, A., J. B. Swift, H. L. Swinney, and J. Vastano, Determining
Lyapunov exponents from a time series, Physica D, 16,285-317,
1985.

Xue, M., K. K. Droegemeier, V. C. Wong, A. Shapiro, and K. Brew-
ster, ARPS Version 4.0 Users Guide, CAPS, Oklahoma, 1995.



