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Chapter 1

Motivation

The aim of this work is to use precise and continuous measurements of GPS-derived
observations together with Numerical Weather Prediction (NWP) models. Along
this thesis it has been attempted to present what GPS provides to the meteorological
community and how these data can be used to improve the prediction of moisture
and precipitation fields.

The water vapor distribution and content are critical variables for the descrip-
tion of the state and evolution of many physical processes in the Earth’s atmosphere.
Although water vapor constitutes only a small fraction of all the atmospheric gases
(fractional volume 0-4 percent), its importance is far greater than this measure would
indicate. For example, water vapor plays an important role in atmospheric processes
that range, in spatial scales, from micro to global meteorology (Rowland and Isaksen
1988). In addition, water vapor is a greenhouse gas and long-term variations in its to-
tal global content could potentially be used as an indicator of global climate change
(Yuan et al. 1993). However, the distribution of water vapor is a highly variable
function of both time and space and correlates poorly with surface humidity mea-
surements. Lack of precise and continuous water vapor data is one of the major error
sources in short-term forecasts of precipitation (Kuo et al. 1993, 1996). Although
ground-based techniques such as radiosondes or water vapor radiometers (WVRs)
are sensitive to the water vapor content present in the atmosphere, they can be ex-
pensive to operate and they provide either poor temporal resolution, poor spatial
coverage, or both. Radiosondes are launched typically only once every twelve hours
and they are sparse over wide areas in the globe; in contrast to space-based WVR,
ground-based WVR have good temporal resolution but poor spatial coverage. New

observational techniques that are sensitive to the spatial and temporal distribution



of the water vapor content in the atmosphere have made now possible the retrieval
of precise and continuous estimates of water vapor with high spatial density. This is
the case of the Global Positioning System (GPS). Even though GPS was originally
designed for military navigation and positioning, the applications of this technique
already abound in areas such as geodesy, volcanology, oceanography, or glaciology
to cite a few. See, e.g., Herring (1999), and references therein, for a review of some
applications for geodesy. For an overview of previous studies on the applications of
the GPS technique carried out in our group, we refer to Rius et al. (1997); Cucurull
et al. (1998); Ruffini et al. (1998), (1999b); Flores (1999), Behrend et al. (2000);
Flores et al. (2000a), (2001).
The structure of the present thesis is as follows:

e Chapter (2) briefly reviews some general aspects of the NWP systems and how
these models assimilate the observational data sets.

e Chapter (3) summarizes the time delay effects on GPS electromagnetic waves
traveling through the atmosphere (excluding the ionosphere), and how the at-
mospheric water vapor content can be determined through the modeling of these

effects.

e Chapter (4) contains the comparison of the GPS-derived observations with the
values obtained from three different NWP models and for different meteorolog-

ical situations.

e Chapter (5) presents a simple approach of the variational assimilation of GPS
data and surface pressure measurements, in which a 1-dim algorithm performs

a local analysis of one atmospheric column.

e Chapter (6) describes the global 4-dim variational assimilation of GPS-derived
observations into a NWP model. Two different cases are analyzed depending

on the type of variables and the number of observations to be assimilated.

e Chapter (7) concludes the thesis summarizing the main results of this study

and finally discussing the future lines of research.



Chapter 2

Introduction to NWP models

2.1 Basics of meteorological models

We assume in this work that the state of the atmosphere can be described by x(r, t)

for a given position r and time ¢,

x(r, 1) = x[v(r, 1), T(r, 1), p(x, ), p(r, 1] (2.1)

where v is the wind, 7" the temperature, p the pressure, and p the density. These
fields are not completely independent since they have to verify some constraints. The
pressure, temperature, and density are related by the equation of state for perfect
gases,

M, p
RT
where R is the gas constant per mole and M, is the molecular weight of the perfect

p= (22)

gas.

The evolution of the components of the state vector x(r,t) are related by the
fundamental laws of fluids mechanics and thermodynamics expressed in terms of
partial differential equations. These governing laws are the conservation of mass
(continuity equation), the conservation of momentum, and the conservation of energy
(first law of thermodynamics). We next briefly describe these conservation laws. See,
e.g., Holton (1992) for a detailed description of these equations.

e conservation of mass:

The conservation of mass (or continuity equation) can be written as follows:



9 _
ot

where —V-(pv) is the mass inflow per unit volume. This equation states that the

=V - (pv) (2.3)

rate of increase in mass per unit volume is equal to the rate of change of density.

In the expression above, we have made use of the relationship D% = % +v-V

conservation of momentum:

The momentum equations come from the Newton’s second law, where the mo-
tion in an inertial reference frame is now referenced in a frame rotating with
the Earth. If we assume that the only forces acting on the atmosphere are the
pressure gradient force, gravitation, and friction, these equations can be written

as follows:

Dv 1
— = -20Av— -V F, 2.4
Dt Voo p+g+ (2.4)

where € is the angular velocity of the Earth, and F, is the frictional force.

conservation of energy:

The first law of thermodynamics relates the rate of addition of heat energy @,
the internal energy E and the work W done by the system on its surroundings
when expanding for a system which is in thermodynamic equilibrium. The mass
of fluid of a control volume in the atmosphere is not in thermal equilibrium.
However, if we consider that the internal energy of the fluid is composed of the
internal kinetic energy of the particles and the kinetic energy due to the motion
of the fluid, the first law of thermodynamics still applies and can be written as

follows:

DE_DQ+DW
Dt Dt Dt

(2.5)

Equation (2.5) states that the rate of change of thermodynamical energy is equal
to the rate of heating plus the rate at which work is done on the fluid parcel
by external forces. Considering the external forces that do work, expanding
and working with equation (2.5), and substrating the terms involved in the
mechanical energy equation, we obtain the usual form of the thermal energy

equation:



DT Do

Q= Cvﬁ +Pﬁ (2.6)

where ¢, is the specific heat at constant volume, and « is the specific volume
(a=1/p).

Since vertical motion in the atmosphere is generally very small, in some cases
it is a useful approximation to assume that there is a balance between the pressure

gradient and gravity forces given by

Ap = —pgAz (2.7)

where ¢ is the acceleration of gravity and z is the height variable. (Here, p is the
density of dry air). Note that Ap is negative since pressure decreases with altitude.
The hydrostatic equation (2.7) provides a good approximation for the vertical depen-
dence of the pressure variable. Assuming a constant value for g and making use of

the equation of state for an ideal gas (2.2), the integration of (2.7) gives

p(z) = p(0)exp(—z/h) (2.8)
where the scale height h is given by h = RT/M,g, and is the increase in altitude

necessary to reduce the pressure by a factor e. The value of pressure variable at

z = 0 is given by p(0).

The conservation equations together with the equation of state for perfect gases
and the hydrostatic approximation are known collectively as the primitive equations.
A NWP model consists of these equations together with initial conditions (i.e. the
model state at the initial time), and boundary condition (i.e. the condition that the
model needs to satisfy at the boundary of the domain) if the model domain does not
cover all the Earth. This model is supposed to reflect the evolution of the state of the
atmosphere and has usually the form of a differential equation. We can write such a

model F'in a general continuous form

0x(r,t)

T Flx(r,t)] (2.9)
X(r, t)]t=to = Xo(T) (2.10)
x(r,t)|r = y(t) (2.11)

7



where xo(r) and y(¢) represent the initial condition at time ¢, and the lateral bound-
ary condition at the boundary of the domain I', respectively.

However, the equations that drive the evolution of the state of the atmosphere and
which are described in (2.9), (2.10), and (2.11) in a generic form, are non-linear and
can only be solved by using numerical techniques. Furthermore, the non-linearity
of the equations means that any small error in the initial conditions are likely to
grow making the solution useless in a deterministic sense after a number of days.
Therefore, these continuous equations are solved by discretization in space (providing
a grid size) and time (providing a time step).

Given an adequate description of the initial conditions, NWP models can satisfac-
torily predict the atmospheric state for periods ahead of hours up to a few days. For
longer periods deficiencies in the models become apparent. The most fundamental
of these is the parameterization of sub grid scale motions due to the discretization
in space of the model. Even when the grid size is reduced, there will be smaller
scale motion to be considered which, because of the lack of a comprehensive theory
describing the interactions between different scales which always occur in turbulent
motions, can only be dealt with in a crude empirical manner.

If the horizontal grid size of the model is larger than around 10 km, we can use the
hydrostatic approximation (2.7). With this approximation, the vertical acceleration is
neglected when comparing with gravitational acceleration. The models that use this
approximation are known as hydrostatic models (e.g. the version of HIRLAM and
MASS models which are described in this thesis). However, when the representation
of a smaller-scale phenomena is required, finer grid size is needed and the hydrostatic
approximation can not be used. This is for instance the case of the MM5 model, which
is a non-hydrostatic model. In general, the higher the resolution, the more accurate
the model. This is because the orographic influences are particularly strong in some
areas and non-hydrostatic models tend to resolve the orographic effects reasonable
well provided they work at sufficient resolution. Since the non-hydrostatic models
allow more localized studies, they also can solve the deep convection effect better
than hydrostatic models (Dudhia et al. 1993). The impact of the grid resolution
on the comparison between the MMb5 model and the GPS-derived observations is
analyzed in Section (4.2).

There are different methods which are used in the solution of the differential equa-
tions of motions of the atmosphere. We should distinguish between two broad cate-
gories: finite differences (e.g. MM5 and MASS models), and spectral (e.g. HIRLAM



model).

e finite differences: values and derivatives of the variables are represented at dis-
crete points on a grid. Usually the grid is regular in the horizontal coordinate
and most models have a non-uniform grid in the vertical direction to have a
finer resolution in the boundary layer. See, e.g., Arakawa (1966), Lilly (1964),
Sadourny (1975), and Arakawa (1984) for a detailed description of this tech-

nique.

e spectral method: the horizontal representation is in terms of truncated series
of spherical harmonic functions, whose variation is described by sines and
cosines in the east/west direction and by associated Legendre functions in the
north/south direction. See, e.g., Machenhauer (1979), and Jarrau and Simmons
(1984) for a description of this method.

Two different types of models are in use for NWP depending on their coverage
area: global and regional models. Global models cover the whole Earth and are gen-
erally used for medium range forecasts (more than two days), while regional models
run for limited areas and are used for shorter range predictions (between 1 and 3
days). More recently the resolution of regional models has been increased to just a
few kilometres in order to resolve better mesoscale phenomena. Along this thesis, we
are going to deal with regional models only.

An important characteristic of NWP is the nesting capability, i.e. the ability to
perform simulations over areas enclosed in a larger simulation domain which forecast
output is used as initial and boundary conditions for the smaller domain. This in-
teraction between different scales can be 1-way nesting (e.g. like in HIRLAM and
MASS models) or 2-way nesting (like in MM5). In both cases, the nest’s input comes
from the coarser simulation, while there is a feedback to the coarser mesh over the

nest interior for the 2-way interaction case.

The useful forecast of a NWP model depends not only on the resolution and
accuracy with which the dynamical processes are represented; it critically depends
also on the initial conditions used to integrate the model. The available observations
should be used to initialize the model and to dynamically modify its evolution in order
to make good predictions. In the following section, we introduce the concept of data
assimilation and summarize the different methods used to assimilate observational

data in order to improve the forecasts of a meteorological model.



2.2 Data assimilation techniques

An analysis is the production of an accurate image of the true state of the atmosphere
at a given time. Here, the atmosphere is assumed divided in N voxels. The best
possible state x* that can be represented by a model at time ¢ can be described, as

was seen in the previous section, by a N-dimensional discrete vector:

X% = [vi,T0,p1, p1s ooV, Ty Dy ] s n=1,...., N (2.12)

where x*(r, ) has been renamed as x*,; for clarity. Since the NWP models have lower
resolution than reality, this state will never be completely realistic (representativeness
error). Therefore, there will exist some discrepancies between the observations (even
if they do not have any instrumental error) and their equivalent modeled values in
the analysis.

The information that can be used to produce the analysis is a collection of observed
values provided by observations of the true state. If the model state is overdetermined
by the observations, then the analysis reduces to an interpolation problem. In most
cases the data is sparse and the analysis problem is under-determined. In current
operational meteorological models, the dimension of the model state x is of order of
10%, and the dimension of the observation vector is of order of 10° per analysis.

In order to make it a “well-posed” problem it is necessary to rely on some back-
ground information in the form of an a priori estimate of the model state. Physical
constraints on the analysis problem can also help. The background information can
be climatology or a trivial state, it can also be generated from the output of a pre-
vious analysis or the evolution predicted by a forecast model. In a well-behaved
system, one expects that the information accumulates in time into the model state,
and propagates to all variables of the model.

Data assimilation is the general process by which observational meteorological
data are merged together with a dynamical model of the atmospheric flow in order to
obtain as accurate and as consistent as possible a description of the atmosphere. De-
pending on the problem under consideration, the final product can be the description
of the atmosphere at a given time, the evolution of the atmospheric state over a given
period of time or the estimates of averaged climatic quantities. See, e.g., Bouttier
and Courtier (1998) for a review on this subject.

An ideal assimilation should be able to process all the available information:

e observations (surface stations, radiosondes and pilot balloons, aircraft reports,

10



vertical temperature soundings, cloud-drift winds, ...) and their covariances.

e physical laws governing the temporal evolution of the atmosphere (i.e. the

equations of the model.)

e a priori information (background state and, in case of regional models, boundary

condition) and its covariance.

The variances and correlations of the observational error are needed for each kind
of data to be assimilated. In current meteorology, a diagonal matrix (no correlation)
generally works well.

The variances and correlations of the background error are also needed to spread
and smooth information from observations location to surrounding grid points (a
diagonal matrix in the grid point space does not work). The (linearized) balance
properties of the atmosphere (geostrophy, hydrostatic approximation, etc) are also
included in the background correlations. Thus, these correlation terms provide infor-
mation about all the variables that are balanced with one model variable.

A crude estimate of the background error variances can be obtained from clima-
tological variances of the meteorological fields. A better average estimate is achieved
from the differences between the forecast and a verifying analysis. The estimation
of the error covariances is more difficult because they are not observed directly. In
general, the only way to estimate background covariances is to assume that they are
stationary over a period of time and uniform over a domain. The background error
covariances should vanish for very large separations.

In practice, two empirical methods are used for the background covariance matrix:

1) built from temporal series of the differences between a verifying analysis and
forecasted values, and

2) estimated from temporal series of the the differences between two model predic-
tions (f; and f3) at two different times [called NCEP (National Centers for Environ-
mental Prediction) method, because it was introduced by the U.S. weather service].
Usually, f; and f, are a 24 h and 48 h forecast runs.

There are two basic approaches to data assimilation: continuous assimilation,
that introduces observations and analyze them, using the first guess at the appropriate
time, and continues the forecast from the updated atmospheric state; and intermittent
assimilation, that treats observations simultaneously, usually every 6 hours. We next

briefly describe the main data assimilation techniques.
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Cressman analysis and related methods:

One may like to design the analysis procedure as an algorithm in which the model
state is set equal to the observed values in the vicinity of available observations, and
to an “arbitrary” state otherwise. This formed the basis of the Cressman analysis
scheme which is still widely used for simple assimilation systems.

The model state is assumed represented as grid-point values. If we denote by xy,
a previous estimate of the model state (background) provided by climatology or a
previous forecast, and by y; a set of ¢ = 1...n observations of the state, the Cressman
analysis provides the model state x, defined at each grid-point j according to the
following update equation:

n

Xa(j) = xb(j) + Zl W (i, )y (2) = xu(J)] (2.13)
oy w(ig)
Wi, j) = w0 (.]) (2.14)

The weight function is given by

2 __ 42
w(i,j) = %JF—Z% ;d(4,7) < R; and y(¢) is observed (2.15)
w(i,j) = 0 ;d(i,7) > R; or y(7) is not observed (2.16)

where d, ; is a measure of the distance between points ¢ and j. The weight function
w(%, j) equals one if the grid-point i is colocated with observation j. It is a decreasing
function of distance which is zero if d; ; > R;, where R; is a user-defined constant
beyond which the observations have no weight. There are many variants of Cressman
method. One is the successive correction method or observation nudging where the
weights can be less than one for i=j, which means that a weighted average between
the background and the observation is performed. This method is not satisfactory in

practice for the following reasons:

e if we have a preliminary estimate of the analysis with a good quality, we don’t

want to replace it by values provided from poor quality observations,

e in a region with dense observations (denser than the model grid-points), the

Cressman method does not define the analysis in an intrinsic way,

12



e when going away from an observation, it is not clear how to relax the analysis

toward the “arbitrary” state, and

e the Creesman method does not guarantee some basic known properties of the

true system, like smoothness of the fields, or relationship between the variables.

The method has been quite successful especially when enough data are available to
define the atmosphere and is very cheap in computation and easily programmed.
It is however very empirical in its nature and proper used of the known statistical
properties of the atmosphere cannot be made.

Statistical analysis:

We denote by x, the analysis model state, y the vector of observations, H the
observation operator, B the covariance matrix of the background errors (x, — x*),
R the covariance matrix of the observation errors (y — H[x%]), and A the covariance
matrix of the analysis errors (x, —x*). The estimate x, can be obtained as a solution

to the variational problem (or “least-squares”) (Lorenc 1986):

J0) = (x— %) B (x— ) + (v ~ BT Ry —Hx])  (2.17)
= Jp(x) + Jo(x) (2.18)

where J is called the cost function of the analysis, J, is the background term, and
J, is the observation term. The estimate x, is the value which minimizes the cost
function J,

oJ
ox
The analysis x, is optimal (i.e. it is closest in a least-squares sense to the true state

2B7 ' (x —xp) + 2H" R (y — H[x]) =0 (2.19)

x*). If the background and observation error probability density functions (pdfs) are
Gaussian, then the optimal state x, is also the maximum likelihood estimator of x*.
External weak constraints can be added to the cost function (2.18).

If the operator H can be linearized as H,

H(x + 6x) = H(x) + H(6x) (2.20)

the expectation of the background and observation errors is zero, and the observation
and background errors are mutually uncorrelated, then the solution of (2.19) is the

13



optimal least-squares estimator, or the Best Linear Unbiased Estimator (BLUE),

defined by the following equations:

Xa = Xp + K(y — Hxp)) (2.21)
K = BH'(HBH" + R)™* (2.22)

where the linear operator K is called the gain, or weight matriz, of the analysis. The

analysis error covariance matrix is, for any K:

A= (I-KH)B(I - KH)" + KRK" (2.23)

If K is the optimal least-squares gain, the expression becomes A = (I — KH)B.
Weakly non-linear observation operators can be used, with a small loss in the opti-
mality of the result.

The linear least-squares solution requires in principle the specification of covari-
ance matrices B and R. Except in analysis problems of very small dimension, it is
impossible to compute exactly the least-squares analysis. Some approximations are
necessary, like the Optimal interpolation (OI) analysis.

The OI is an algebraic simplification of the computation of the weight K in the
analysis equations (2.21) and (2.22). The equation for x, can be regarded as a list
of scalar analysis equations, one per model variable in the vector x. For each model
variable the analysis increment is given by the corresponding line of K times the
vector of background departures (y — H[xp]). The fundamental hypothesis in OI is
that for each model variable, only a few observations are important in determining
the analysis increment.

The selection of observations should in principle provide all the observations which
would have a significant weight in the optimal analysis. In principle, background error
covariances are assumed to be small for large separation, so that only the observations
in a limited geometrical domain around the model variable need to be selected. The
advantage of OI is its simplicity of implementation and its relatively small cost if
the right assumptions can be made on the observation selection. A drawback of this
method is that spurious noise is produced in the analysis fields because different sets
of observations are used on different parts of the model state. Also, it is impossible
to guarantee the coherence between small and large scales of the analysis.

In order to avoid the computation of the gain K, we can look for the analysis as an

approximate solution to the minimization problem defined by the cost function (2.18).
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This is the principle of the three-dimensional variational analysis (3D-VAR). The
solution is sought iteratively by performing several evaluations of the cost function
and of its gradient (2.19) in order to approach the minimum using a suitable descent
algorithm. The approximation lies in the fact that only a small number of iterations
are performed. The initial point of the minimization, or first guess, is usually taken
equal to the background xy.

The popularity of 3D-VAR stems from its conceptual simplicity and from the ease
with which complex observation operators can be used, since only the operators and
the adjoints of their tangent linear need to be provided. The method removes the
local data selection in the OI algorithm and performs a global analysis of the 3-dim
meteorological fields. In OI the weights are obtained using suitable simplifications,
while in 3D-VAR the minimization is performed directly, and therefore allows for
additional flexibility.

In the case of time evolving systems when one wants to reconstruct the state of
the system at the final time of the observing period, one might implement sequential
estimation over the observing period [0,R]. The cost function defined in (2.18) is
extended now over a given time interval with the observations distributed among n

epochs in the interval,

n

J(x) = (x —xp)" B~ (x — xp) + ZO:(yt — Hfxi])" Ry (v — Halx]) (2.24)

where (X.....X,,) is the sequence of state vectors over the period [0...n], and (yq.....¥x)
is the set of observation vectors during the observing period. The covariance matrix
of y, is defined as R;, and is the sum of the observational and representativeness
error. The background error covariance matrix B is only defined at initial time.

The equation (2.24) is subject to the strong constraint that the sequence of model
states x; must be a solution of the model equations:

x¢ = M;(xo) (2.25)

for all model states x;, where M; is the model forecast operator from the initial
time to ¢ with covariance matrix (;. The minimization of (2.24) is thus a nonlinear
constrained optimization problem which is very difficult to solve in the general case.
Two hypotheses simplify the general minimization problem: causality and the tangent

linear hypothesis.
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e Causality: The forecast model can be expressed as the product of the inter-
mediate forecast steps. If the dates t are sorted with respect to time, with xq
as initial condition so that M is the identity, and by denoting M, the forecast

step from ¢ — 1 to ¢ we have x; = M;(x; 1) or

Xy = MtMtfl---Ml(XO) (226)

e Tangent linear hypothesis: The cost function can be made quadratic by assum-

ing that the operators H; and M, can be linearized,
Mt(Xt -+ 5Xt) = Mt(xt) + Mt(dxt) (227)
Ht(Xt -+ 5Xt) = Ht(Xt) + Ht(dxt) (228)

Under these approximations, the estimate of the state vector at time ¢ is given by

the following expressions, known as the Linear Forward Kalman Filter solution:

X = Xy, 5 + Ki(yr — Hy[xe,]) (2:29)
K, = P, H' (H,P,;H] + R;)! (2.30)

where x; ; is the a priori estimate of the state vector at ¢ with a covariance matrix
P, ¢. The estimate x; y is a forecast from the estimate valid at previous time ¢ — 1.
The forecast step transports in time the model state and the covariance matrix in

the following way:

Xt,f = Mt(xt—l) (232)
P,y =MP,iM] +Q (2.33)

The (linear) Forward Kalman Filter, under the assumption that all observations
are processed if they were available at the end of the time period R and that the
matrix covariances are dropped (P, = P,y = B), leads to OI or 3D-VAR, depending
on the type of estimation used in the analysis step.

The filter approach works sequentially, i.e. the estimate of the state of the atmo-
sphere at time t is performed with the observations taken before . However, when
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all the observations over the interval [0,R] are available, the only way to estimate
the optimal state of the atmosphere at ¢t=0 is to run a smoothing or backward fil-
ter. In this case, the model solution over the assimilation period is globally adjusted
to the available observations, with propagation of the information contained in the
observations both forward and backward in time. This is the idea which underlies
the Kalman smoother and the four-dimensional variational (4D-VAR) assimilation
technique. The equations are the same, provided the observation operators are gen-
eralized to include a forecast model that will allow a comparison between the model
state and the observations at the appropriate time. These methods require the assim-
ilation to wait for the observations over the whole time interval to be available before
the analysis procedure can begin. The Kalman smoother, under the assumption that
the model is perfect (@ = 0) leads to 4D-VAR.

With the present computer technology, both the Kalman filter and the Kalman
smoother cannot be implemented for NWP problems. The Kalman smoother runs at
a much larger cost than the 4D-VAR approach. Chapter (6) analyzes in detail the
assimilation of GPS-derived observations into MM5 in a 4D-VAR approach.

4D-VAR is a simple generalization of 3D-VAR for observations that are distributed
in time (see, e.g., Talagrand 1991). A schematic diagram of the 3D-VAR and 4D-
VAR approaches are shown in Figure (2.1). In the diagram, the optimal state of the
atmosphere is found for a period of 6 h. The evaluation of the 4D-VAR cost function
and its gradient, requires one direct model integration from dates 0 to n and one
suitably modified adjoint integration made of transposes of the tangent linear model
time stepping operators M.

Over a given time interval, under the assumption that H and M can be linearized,
and the model is perfect, with the same input data (initial background and its covari-
ance B, distribution of observations and their covariances R;), the 4D-VAR analysis
at the end of the time interval is equal to the Kalman filter analysis at the same time.

The Hessian of the cost function of the variational analysis is equal to twice the
inverse of the analysis error covariance matrix. In 4D-VAR, the error covariance
matrix P, is implicitly computed. The flow dependence of the estimation error is
therefore accounted for. However, there is no explicit expression for the forecast
error, such in the Kalman filtering approach.

In NWP, the adjoint code development requires the development of the tangent
linear model. Any code, no matter how complex it is, boils down to a series of transfor-

mations of values through the application of basic operations (i.e. sum, multiplication,
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division). The tangent linear code is obtained by differentiation of the forward code.
To derive the adjoint code, one needs to transpose the tangent linear code. There
are automatics adjoint generators (e.g., TAMC, http://www.mit.edu/giering/tamc;
ADIFOR, http://www.mcs.anl.gov/autodiff), although most adjoint model develop-
ments are carried out by hand. This is because the pre-existing models are usually
not ’clean’ and content many approximations which makes the adjoint coding not
directly applicable to most problems. See Zou et al. (1997) for details on the MM5
adjoint coding.

New observing systems, especially remote sensors such as satellites and radars,
have been available during the last years. Data assimilation techniques should be
adapted for this large number of new instruments. This is the case of the GPS
system which is described in the following chapter.
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Figure 2.1: Schematic diagrams of the 3D-VAR and 4D-VAR techniques.
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Chapter 3

A new observational data source:
GPS system

3.1 Time delay effects on GPS signal

The GPS constellation consists of 24 operational satellites (orbiting at an altitude
of about 20,000 km) which transmit ranging data at two radio frequencies for posi-
tioning (1.2276 and 1.57542 GHz). The use of two frequencies is motivated by the
dispersive nature of the effect introduced by the ionosphere. The carrier frequencies
are modulated by pseudo-random noise codes and a navigation message, which is
designed to inform the user about the health and positioning of the satellite. The
carrier frequencies and the modulations are controlled by on-board atomic clocks.
These GPS signals are picked up either by ground-based receivers or by moving
platforms (like buoys, planes, low Earth orbit satellites, etc). This thesis has been
addressed to the observations gathered at ground receivers forming networks of sizes
ranging from 5 to 300 km. A study on the use of GPS signals gathered at smaller
networks (less than 5 km) can be found in Flores (1999) and Flores et al. (2001).
The GPS signal, as it propagates through the atmosphere, is affected by the

atmosphere in two different ways (Bevis et al. 1992):

1. the signal experiences an extra delay relative to the straight line were the at-

mosphere replaced by vacuum, and
2. the signal travels in a curved path instead of in a straight line.

The delay in signal arrival time can be stated in terms of an equivalent increase
in travel path length. This excess path length is given by
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AL = /Ln(s)ds -G (3.1)

where n(s) is the refractive index as a function of position s along the curved ray
path L, and G is the straight-line geometrical path length trough the atmosphere.

The expression above can be written as follows:

AL = /L (n(s) — 1]ds + [S — G] (3.2)

where S is the path length along L. The first term in (3.2) is due to the slowing effect
and is because the index of refraction of the atmosphere differs from one. The second
term is due to bending and vanishes for rays oriented along the zenith direction and
in the absence of horizontal gradients.

The extra delay of the GPS signal, known as atmospheric delay, is commonly
regarded as a nuisance parameter for geodetic purposes. However, due to the inherent
sensitivity of the GPS system, this error source can be converted into the object of
study. The use of GPS for the determination of water vapor content in the zenith
direction with a precision of a few millimeters is a well established technique (e.g.,
Bevis et al. 1992; Rocken et al. 1993, 1995; Businger et al. 1996; Duan et al. 1996).

Some of the atmospheric estimates obtained with GPS have been compared with
estimates obtained with other techniques which are also sensitive to the amount of
water vapor in the atmosphere, such as very-long baseline interferometry (VLBI) and
WVR. Carlsson et al. (1996), for example, showed that the root-mean-square (rms)
agreement, between the water vapor delay estimates from these techniques is better
than 10 mm, though the VLBI estimates presented an unresolved systematic bias
of about 5 mm compared to the other two methods. The measurements from these
three techniques, in turn, have been compared with integrated values of water vapor
obtained with radiosondes, which measures the in-situ state of the atmosphere. For
example, the agreement found between estimates of precipitable water (PW) obtained
using GPS and radiosondes is at the 2 mm rms level (Rocken et al. 1993, 1995; Duan
et al. 1996; Tregoning et al. 1998; Emardson et al. 1998).

We next discuss the equivalence between water vapor delay (commonly known as

wet delay) and precipitable water.
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3.2 Modeling of the neutral atmospheric delay

The neutral atmosphere affects the propagation of electromagnetic signals by retard-
ing and bending them. These effects can be determined if one knows the index of
refraction n, or more conveniently, the refractivity N, defined as 10%(n — 1). If we
neglect the contribution of the liquid water content (Kursinski, 1997), the total refrac-
tivity of the neutral atmosphere is given by (Smith and Weintraub 1953; Thompson

et al. 1986)
Pd Pw -1 P —
N=k1<T>Z +k2(?)Zw +k3(T2>Z (3.3)

where P; and P, are the partial pressures (in hPa) of dry air and water vapor,
respectively, T is the temperature (in K) of air, k; = (77.604 + 0.014) K hPa™!,
ky = (64.7940.08) K hPa™!, k3 = (3.776 +-0.004) x 10° K? hPa~! are the refractivity
constants (Thayer 1974), and Z;* and Z,! are the inverse compressibility factors of
the dry gases and water vapor (Owens 1967), respectively. For an ideal gas Z = 1,
and for the atmosphere differs from unity by a few parts per thousand.

The atmospheric delay is the integral of the refractivity along the ray path. We
use mapping functions to relate atmospheric delays as measured in any sky direction
to zenith delays. See Niell (1996) for a review and error discussion on the various
mapping functions employed in geodetic analysis that do not incorporate azimuthal
variation, and Chen and Herring (1997) for mapping functions that do incorporate
azimuthal asymmetry.

It is useful to separate the zenith atmospheric delay as the sum of two terms
(Davis et al. 1985): the hydrostatic delay and the wet delay. These two delay terms
are given by the expressions

P
AL: = ZHD =10-° [* dz N, =/ dz (27" + (ks = k’) Z-1) (3.4)
0
. 6 oo © P, P,
AL: =ZWD =107 [®dz N, :/0 dz (K22, + ks 25 Z,") (3.5)

where h refers to hydrostatic, w to wet, z is the zenith direction, k}, = ko—ki (M, /My) ~
17410 K hPa™!, and M, and M, are the molar weights of water vapor and dry gases,
respectively. Hence, AL*=7ZTD=7ZHD+ZWD. The zenith hydrostatic delay is a re-
sult of the induced dipole moment and has a typical value of around 2300 mm at sea
level. The zenith wet delay, which is associated with the atmospheric water vapor, has
a smaller value (0-300 mm at sea level), and is due to the permanent dipole moment
of the molecules of water vapor present in the troposphere. The wet contribution is
very difficult to model because it is highly variable in space and time.
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The zenith hydrostatic delay can be accurately modeled if measurements of total
surface pressure are available (Saastamoinen 1972),

P
f\ H)
where ZHD is expressed in mm, P; is the surface pressure expressed in hPa, and
f(A,H) =1—0.00266 cos(2\) — 0.00028 H accounts for the variation in gravitational
acceleration with latitude A and the height H of the surface above the ellipsoid (in

ZHD = (2.2779 + 0.0024)

(3.6)

km). This delay can be predicted to better than a millimeter with surface pressure
accuracies of 0.4 hPa (see, e.g., Elgered et al. 1991 for a discussion on the uncertainty
associated to the zenith hydrostatic delay).

Once estimated, the zenith wet delays can be accurately converted into PW by
using the expression (Bevis et al. 1994)

PW = ZWD - I1(T,, p») (3.7)

where PW and ZWD are expressed in mm and (7, p,) is given by

108

= R/ To) + 1)

(3.8)

In (3.8), R, is the specific gas constant for water vapor (461.5 J kg 'K™'), T;, is the
mean temperature of the atmosphere, defined as T,,, = (J5° dz P, /T)/(Js° dz P, /T?)
(Davis et al. 1985), and p, is the density of liquid water. The mean temperature
depends on the vertical profile of P, and atmospheric temperature 7". Fortunately,
the mean temperature has been empirically found to be well correlated with surface
temperature (Bevis et al. 1992). For example, based on more than 120 000 radiosonde
profiles from 38 sites in Europe, Emardson and Derks (1999) determined a value of
IT ~ 0.15 for a time-averaged ground temperature of 275 K with a relative rms error
of 1.14%. Because this error is significantly smaller than the error of the estimates
of zenith wet delays, an error of 10 mm in zenith wet delay propagates to 1.5 mm in
PW after (3.8). It is now possible to recover PW routinely from GPS data with a
rms error of less than 2 mm + 1% of the PW and a long-term bias of less than 2 mm
(Dixon et al. 1990; Herring et al. 1990; Bevis et al. 1992; Rocken et al. 1997; Ware
et al. 1997).

One of the most suitable atmospheric application of GPS is perhaps the assim-
ilation of water vapor content estimates into NWP and climate models. The lack
of humidity measurements that could potentially be assimilated into NWP forecast
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models is the main reason of its (sometimes) low reliability (Kuo et al. 1993, 1996).
The fact that GPS can supply these data in near-real time (Rocken et al. 1997) and
at low cost is changing, at the algorithmic level, the way these models are being used
to assimilate the GPS estimates (Zou and Kuo, 1996; Kuo et al. 1996). GPS slant
delay measurements (Ware et al. 1997), the delay along the lines-of-sight from the
receiver to the satellites (as opposed to zenith delays, the delay in the zenith direc-
tion) provide information that can be used to extract vertical profiles of the index of
refraction of the atmosphere. However, this thesis is focused on zenith atmospheric
delays, while slant delays are not treated through the work.

GPS data will possibly be assimilated into operational NWP models in the future
in a variational assimilation context. In preparation for these efforts, it is necessary
to determine how NWP models will fare in simulating GPS measurements. This is

analyzed in the following chapter.
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Chapter 4

The use of GPS to validate NWP

models: atmospheric delays

The methods used to obtain GPS-derived observations from geodetic techniques and
their comparison with NWP models is the subject of the following sections.

In this chapter, we analyze several meteorological situations using three different
mesoscale numerical models. The study shows that the observations estimated from
the GPS atmospheric delays are an accurate measurement to validate some aspects
of NWP models.

Section (4.1) analyzes an experiment characterized by high precipitable water val-
ues associated to rainfall events by means of the HIRLAM (HIgh Resolution Limited
Area Modeling) model. Particular emphasis is devoted to describe our implemen-
tation of a NWP monitoring system with the use of a near real time (NRT) GPS
data processing. A mesoscale convective system is treated in Section (4.2) with the
MM5 (Mesoscale Modeling System v.5) model. We finally present first results for a
selected period of intense precipitation by using the MASS (Mesoscale Atmospheric

Simulation System) model in Section (4.3).

4.1 The HIRLAM model: December 1996

In this section, we analyze a meteorological situation using GPS observations and a
NWP model in the vicinity of the Madrid Sierra, Spain, between 2 and 15 December
1996. See El6segui et al. (1998) for a detailed description of this GPS campaign and
the GPS data processing.

The modeled calculations of precipitable water are carried out by HIRLAM, the
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hydrostatic NWP model operational at the Instituto Nacional de Meteorologia (INM,
Spain). We have run HIRLAM in two modes: analysis or HIRLAM/A and forecast
or HIRLAM/F.

We have concentrated on estimates of PW derived from zenith delay measurements
acquired at several ground-based GPS sites. The results from this study will provide
an upper bound on the size of the GPS errors that are acceptable so that these GPS-
derived PW estimates have a positive impact on numerical weather prediction models
once they are correctly assimilated.

Yang et al. (1999) have studied the ability of the HIRLAM model to reproduce
the spatial and temporal evolution of PW by comparing the model values with GPS
estimates obtained on a spatial scale of 100-1500 km in northern Europe. Our goal
here is to perform a comparative study of the spatial and temporal distribution of
the water vapor content as obtained with GPS and modeled with HIRLAM on a
smaller scale (5-50 km) and high topographic relief. Data from radiosonde launches
were also available in the area of study and have been used as an additional check.
The geographical region selected for the experiment, the Madrid Sierra, Spain, is
characterized by complex topography. The GPS-derived PW data will be used to
check the reliability of the model performance in an area with strong topography
(Cucurull et al. 1999, 2000).

4.1.1 Experimental setup and meteorological situation

We conducted a GPS experiment during 2-15 December 1996 in the Madrid Sierra of
Spain to (1) study the spatial and temporal variations of PW and (2) compare the
GPS-derived estimates of PW with PW values simulated with the HIRLAM numerical
weather prediction model.

The GPS network consisted of five Trimble 400SSE receivers forming baselines
ranging in length from 5 to 50 km. Figure (4.1) shows the geographical location of
the GPS sites. We employed Trimble geodetic L1/L2 antennas with ground plane
(Elésegui et al. 1998). The geographical region selected for the experiment is char-
acterized by complex topography with maximum altitude difference between GPS
sites of about 400 m. Figure (4.2) shows a contour plot of the topography of the
region. Meteorological data were collected at one of the sites (Robledo) during the
experiment. As part of the meteorological package, Robledo operates a (~0.3 hPa)
barometer. Vertical profiles of temperature, pressure and relative humidity were also

available from 12-hourly radiosonde launches at the Barajas airport.
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Two frontal systems crossed the GPS sites during the experiment. The first at
around 4-6 December and the second at around 12-14 December. We selected the
second front to perform a more detailed analysis of GPS-derived PW because this
presented the largest PW values. The synoptic regime corresponding to this meteo-
rological situation can be observed in the 36-h sequence of Figure (4.3). Each map
shows a temporal snapshot of the analyzed mean sea level pressure and temperature
at 850 hPa as determined by the HIRLAM/A low resolution (0.5° x 0.5°) model. A
low pressure system seen in the North Atlantic (somewhat to the northwest of the
Iberian Peninsula) at 12 UTC 12 December moves east reaching the continent and
overpassing the area of interest during 13 December. This low pressure system ad-
vected warm, moist air from the southwest as it approached the coast. The front (see
Figure 4.4) brought steady precipitation to the area of the experiment, with heaviest
rain at around the end of 12 December. Figure (4.3c) shows that the flow is chang-
ing from southwesterly to northwesterly in the center of the Iberian Peninsula on 14

December.

4.1.2 GPS data analysis

The GPS observations at each site consisted of data streams, simultaneously received
from 6 to 8 satellites, of undifferenced dual-frequency carrier-phase and pseudo-range
measurements obtained every 30 sec. We used GPS satellite precise orbits and clocks
as well as consistent earth-rotation parameters provided by the International GPS
Service (IGS), together with the GIPSY /OASIS-II (v.4) software package (Webb and
Zumberge 1993 and references therein) to estimate zenith total delays at the five GPS
sites with a precision of about 0.5 cm (Elésegui et al. 1998). This software uses a
stochastic filter to provide time-dependent estimates of the atmospheric delays for
each site. The dynamics of these delays were modeled as a random-walk stochastic

1/2 This drift rate was chosen to be consistent

process, with a drift rate of 0.25 cm h™
with measurements obtained with a colocated WVR (see Eldsegui et al. 1998 and
Ruffini et al. 1999a for a more thorough discussion.)

To derive precipitable water from the estimates of zenith total delay we first cal-
culated and subtracted out the hydrostatic contribution. We used pressure values
at each site to compute zenith hydrostatic delays via (3.6). In the absence of sur-
face pressure measurements at all sites but Robledo, we have used HIRLAM/A to
calculate 6-hourly pressure values at all sites. The required pressure measurements

between these modeled values we filled up using the pressure data collected at Rob-
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ledo corrected for height differences between sites. This is justified because of the
small bias (0.4 hPa) between the readings of the barometer and the surface pressure
values calculated by the NWP model at the Robledo site over the course of the whole
experiment. This small bias will account for 1 mm bias of zenith hydrostatic de-
lay. Verification scores of both HIRLAM analysis and forecasts against observations
were produced routinely during the objective verification procedure at the INM. The
pressure rms error of HIRLAM/A at mean sea level is 1.5 hPa. We have therefore
adopted this value as the expected error of the estimates of surface pressures at the
other GPS sites, which is equivalent to 3.4 mm error in terms of zenith hydrostatic
delays. The resulting uncertainty of the zenith wet delays estimates is about 6 mm
(the errors in the zenith total delay and the hydrostatic delay added in quadrature)
or, equivalently, about 1 mm PW.

Precipitable water estimates for the whole campaign every 150 sec are shown in
Figure (4.5) for all five GPS sites. The time series for all the stations of the network
are quite similar though small differences between stations due to short-term water
vapor variations can be observed. It is particularly important to determine how
sensitive are the GPS data to specific meteorological situations. For this reason, we
have selected the front passage of 12-14 December described above, which will be
studied in greater detail in the following section. Table (4.1) shows the average and
rms PW values for this front as well as for the first front and the entire campaign.
From the table, it is clear the influence of orography on the measurements. This
dependence is basically due to a scaling of the amount of integrated water vapor with
altitude. In order to carry out a proper intercomparison of the data it would be
necessary to correct for this height-dependent scaling factor. However, we have not
found any empirical function (e.g. an exponential law) that could model adequately
this dependence, perhaps due to the complex topography of the network and/or the
highly unstable atmospheric conditions during the experiment. The table reveals a
significant increase of PW due the passage of the second front. Also, the rms values
for the entire campaign are larger than those of the two fronts because the data span
is five times larger and PW deviates more and more from a mean value the longer
the time period.

In order to compare PW values derived from GPS data with the other two tech-
niques (radiosonde and HIRLAM) we first transformed the ellipsoidal GPS heights
(WGS84 ellipsoid) to sea level heights using the OSU91A geoid model (Rapp et al.
1991). In the area of interest the geoid undulation (i.e. the height of the geoid above
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the ellipsoid) amounts to about 50 m. This value we subtracted from the ellipsoidal
heights.

4.1.3 Radiosonde data

Radiosonde balloons were launched twice a day (at approximately 00 and 12 UTC)
from the Madrid-Barajas airport. The balloons, which are operated by the INM,
were equipped with Vaisala RS-80s radiosondes with A-humicap humidity sensor
(brand names are mentioned for identification purposes only). We obtained zenith
hydrostatic and wet delays by integrating the atmospheric profiles sensed by the sonde
along its ascending path using (3.4) and (3.5), respectively.

Since Barajas is close to the IGNE site (horizontal distance of ~12 km, height
difference of ~82 m) (see Figure 4.1), we have also compared atmospheric delays
derived from GPS at IGNE and radiosonde at Barajas by integrating the measure-
ments of the latter from the height of IGNE upwards. (However, we should note
that significant water vapor gradients can occur even over a 12 km distance, specially
during the passage of a frontal system.) The balloons reach a maximum height above
the geoid of approximately 25—30 km. To compare formally GPS and radiosonde
delays, one would have to integrate the radiosonde measurements up to the altitudes
of the GPS satellites. Since this is not obviously possible, we have used the following
procedure to extrapolate the radiosonde data (temperature, dew point temperature

and pressure) above the last measurement available and derive radiosonde delays:

e temperature: we used the same values as in the upper level of the HIRLAM
model (see Section 4.1.4).

o dew point temperature: we assigned it low values to get a zero wet-pressure
value—i.e., we assumed that there will not be any significant amount of water
vapor at, and above, these high altitudes (i.e. 30 km upwards), which is a
realistic assumption (Bertin et al. 1996.)

e pressure: we used a constant temperature (isothermal) condition from an alti-
tude of about 12 km upwards throughout the stratosphere, which is a quite
realistic approximation. The equation of hydrostatic equilibrium dP/P =
—(Mg/RT)dz can be readily integrated because T is constant throughout this
region. This isothermal condition leads to the equation for pressure P at alti-

tudes z above 12 km (the approximate altitude of the tropopause zrp),
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(4.1)

-M _
P=Prp- eXp[ QR(; ZTP)]
TP

where Prp is the pressure at the tropopause, M is the molar mass of the air, g
is the effective acceleration of gravity in the stratosphere (assumed constant),
R is the universal gas constant, and Trp is the temperature at the tropopause
(Bertin et al. 1996). Since from an altitude of about 12 km pressure decreases
exponentially with altitude, we fitted the radiosonde pressure data obtained
from the tropopause upwards (we took zrp as 12 km) with an exponential law,
from which we obtained the lapse rate. The values of Prp and Trp in (4.1)
are provided by the soundings. We found an average standard deviation of
about 0.6 hPa when fitting the pressure with an exponential function. This
same law allowed us to extrapolate the pressure values to higher altitudes.
Note that as the pressure is almost zero at about 70 km and all the functions
involved in the delays calculation have pressure in the numerator, it will be
enough to extrapolate the height data until about 70 km. We found that the
extrapolated “upper atmosphere”, that is, the atmosphere from ~30 km to
~T70 km, contributes an average of 3% to the zenith total delay. Radiosonde
zenith wet delays can be converted to PW using (3.7).

The average PW rms error resulting from considering the contribution of the
instrumental errors in the integrating of the radiosonde profiles are about 1 mm.
For the Vaisala radiosonde the humidity sensor has a nominal resolution of 1% and
a repeatability (i.e., the standard deviation of differences between two successful
calibrations) of 2%, the temperature sensor has a resolution of 0.1 K and repeatability
of 0.2 K, and the pressure sensor has a resolution of 0.1 hPa and repeatability of
0.5 hPa. (See the Appendix for more details on the propagation of statistical errors

associated to radiosonde estimates of atmospheric delays.)

4.1.4 The HIRLAM simulation

The hydrostatic HIRLAM short-range weather forecasting system is a complete anal-
ysis and forecast system over a limited area (Kéllen 1996). A fourth-order implicit
horizontal diffusion is used to prevent the enstrophy accumulate at the smaller scales.
The physics contains a parameterization for solar and longwave radiations and for
simple surface processes. In the cloud parameterization, the large scale convection is
a Kuo type with a specific treatment of microphysical processes.
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At the INM, the HIRLAM system is run at two different horizontal resolutions,
0.5° latitude by 0.5° longitude [operational low-resolution run (OPR)], and 0.2° lat-
itude by 0.2° longitude [high-resolution run (HIR)], both with the same 31 p-sigma,
hybrid levels and vertical resolution. The OPR model domain covers the area be-
tween 15.5° and 65.0° north and between -66.5° and 30.0° east. Global forecasts from
the European Center for Medium Range Forecasts (ECMWF) are used as boundary
conditions to the OPR model. The high resolution model, HIR, 1-way nested into the
OPR, has been specially designed to cover the Iberian Peninsula. OPR simultaneous
fields provide the lateral boundaries to HIR. The topography of Spain, due to its
complexity, is much better represented in the HIR than in the OPR run.

The HIRLAM model has a 6-h data assimilation cycle. It is based on a limited
area version of the old ECMWF 3D Optimum Interpolation (see Section 2.2) scheme
for the analysis of the upper air fields (Lonnberg and Shaw 1987). It is multivariate
in the mass and wind fields and univariate in the relative humidity. A short-range
first-guess forecast (6 h) is corrected by observations from a 3-h period spanning
the nominal analysis time. Single level data from the surface land stations, ships,
buoys as well as from aircrafts are used. Also, winds from geostationary satellites
are introduced into the analysis. Multilevel observation reports processed include
information from radiosondes and pilot balloons (e.g. TEMP and PILOT). A later
step of normal modes initialization is performed after the analysis. OPR and HIR
runs have their separated assimilation cycles.

At the INM, 6-h temporal series for the HIRLAM/A model and the 3-h interval
for the HIRLAM/F are the only available simulations in an operational way. Accord-
ingly, we have used the 00, 06, 12 and 18 UTC HIR analysis (HIRLAM/A) and the
00 UTC HIR forecasts at regular intervals from 3 to 24 h (HIRLAM/F) to simulate
HIRLAM precipitable water. The data for this analysis and forecast come from the
HIRLAM archive at the INM. Since the shortest GPS baseline is about 5 km and
the HIRLAM higher grid resolution is about 20 km, we have interpolated, both hor-
izontally and vertically, the HIR model variables to the locations of the GPS sites
before estimating PW. For this, we have used the same operator used by the HIRLAM
model to interpolate the boundary condition fields (KK&llen 1996). Bilinear interpo-
lation from the four closest grid points values is used in the horizontal. To move the
whole model profile from the model topography to the height of each GPS station,
the vertical interpolation is carried out by using tension splines but with emphasis on

preserving the stability properties inside the planetary boundary layer. To interpolate

31



vertically the pressure field from the model topography to the height of each GPS
station, we have integrated the hydrostatic equation from the HIRLAM surface level
to the height of the GPS site using a virtual temperature profile expressed as a linear
function of the logarithm of pressure in the vicinity of the GPS level. In case that the
GPS station is below the HIRLAM surface level, the virtual temperature is obtained
by extrapolation from the three lowest HIRLAM levels, otherwise the temperature
profile is obtained by interpolation from the three closest HIRLAM levels to the GPS
surface level. This linear virtual temperature profile is obtained by regression from
the three selected HIRLAM temperatures.

PW was calculated at every GPS station by integrating the specific humidity in
the vertical, PW=/[dP (1/p,)(q/g), where g is the specific humidity, P the pressure,
g the acceleration of gravity and p, the density of water. The scores of verification
against observations of the HIRLAM products at the INM have been used to estimate
the error of the calculated PW. The resulting error associated to the PW HIRLAM
model varies from 1.4 to 2.1 mm.

In addition, we used a second method to check for the HIRLAM-derived PW
values. We used the temperature, pressure and humidity profiles of HIRLAM to gen-
erate refractivity profiles. The integration of these profiles along the zenith direction
gives us the zenith wet delays after applying (3.5). These simulated zenith delays can
be converted to PW using (3.7). The PW obtained by the HIRLAM model (from
humidity and pressure profiles) are consistent with the PW values calculated from
the integration of the profiles of the vertical refractivity of HIRLAM. We found an
average PW bias of 0.5 mm (rms of 0.2 mm) between both techniques. This good
agreement confirms the validity of the value of 0.15 used for II in (3.8) to infer PW

from estimates of zenith wet delays with GPS.

4.1.5 Results and discussion

We have used estimates of PW to study the ability of GPS to describe the evolution
of a frontal system which crossed our local network. These PW estimates have an
accuracy of 1 mm and can provide information on certain features associated to
the small spatial and short temporal scales of variation of atmospheric water vapor.
Comparable PW accuracies have been obtained in previous studies (e.g., Rocken et
al. 1995; Tregoning et al. 1998). The frontal passage selected corresponds to the time
period of 12-14 December, which is associated with the largest PW values. Figure
(4.6) shows the GPS-derived estimates of PW for two of the sites. We have selected
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Robledo and Escorial as the best suited site pair to study the passage of the front
because they are the two westermost sites of our network and, in consequence, the first
ones to detect any noticeable change in water vapor. (The horizontal distance between
Robledo and Escorial is 20 km.) A distinctive element of Figure (4.6) is the larger
PW values at Robledo compared to Escorial. This is mostly due, as explained above,
to an inverse dependence of the water vapor content with the altitude of the site.
Although both series have similar trends, differences between them can be observed.
For example, the PW time series present a relative time shift of about 40 min at
around 12 December at 14 h, the time series of Robledo leading that of Escorial.
This can be interpreted by the air masses with large content of water vapor reaching
Robledo earlier than Escorial. The predominant southwesterly winds associated with
the front passage (see Figure 4.3) bring the air masses rich in water vapor first to
Robledo. This example illustrates that relatively short temporal variations of PW
over small spatial scales can be accurately determined using GPS.

We will next compare these PW estimates obtained with GPS data (hereafter
PW estimates) with the ones calculated using the HIRLAM/A model (hereafter PW
modeled) and the radiosonde data. The intercomparison of PW using three different
methods is useful to assess their differences and to validate future parameterizations
of NWP models. The ability of HIRLAM to simulate topographically induced effects
is limited by its spatial resolution, especially in complex terrain. As it was mentioned
in the previous section, the HIRLAM lowest resolution model, OPR, was used to
drive the large scale flow in the high-resolution HIRLAM runs. For the comparison
between PW estimates and PW modeled we will only use the high-resolution model.

Figure (4.7) shows PW estimates of GPS, HIRLAM/A and radiosonde for the
15-day period at the IGNE site. The GPS estimates are average values over 30 min
periods. (This filtering of the high-frequency component of PW has been performed
solely for clarity.) All three data sets agree with each other to a few mm level.
However, radiosonde estimates appear systematically lower than the PW obtained
with the other two methods. For example, the bias between PW estimates from GPS
and radiosondes is 1 mm, with radiosondes lower than GPS, and the rms difference
is 1.6 mm. This rms difference falls within the expected PW error of the combined
GPS and radiosonde errors.

The HIRLAM/A model simulates PW during periods of high amount of precip-
itable water (between 11-13 December) reasonably well when compared to GPS PW

estimates. The two PW maxima, which occurred at 12 UTC on 4 December, and at
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00 UTC on 13 December, are associated to the two rainy intervals. The PW modeled
values and the PW estimates are comparable during the precipitation periods, that
is, at around 12 UTC on December 4, and 00 UTC on December 13. A strong de-
crease in total atmospheric moisture occurs shortly after the frontal passage (5 and
15 December). The HIRLAM model does not drop the total water vapor amount so
sharply. Rather, it seems to slightly overestimate this low level moisture conditions
with respect to what it is observed with the GPS data. Thus, HIRLAM seems to
perform quite well compared to GPS if the PW does not change too rapidly. Indeed,
the bias between PW estimates and PW modeled for the entire experiment is 0.2 mm,
with GPS lower than HIRLAM. The rms difference is 2.1 mm and is in agreement
with the expected error derived from the standard deviations of GPS and HIRLAM.

The humidity profiles from which the PW modeled are obtained are largely in-
fluenced by the relative humidity measured by the radiosondes and assimilated into
the HIRLAM model. On the other hand, the relative weight carried by radiosonde
measurements on relative humidity at the surface is smaller because the number of
sites from which radiosondes are launched in the Iberian Peninsula is, of course, con-
siderably smaller than the volume of surface observations that are assimilated into
HIRLAM. Also, the (temporal) sparseness of the radiosonde launches, typically once
every 12 h, contributes to sometimes worsen the PW modeled, which are calculated
every 6 h. Fortunately, the Barajas radiosonde site is near one of the GPS stations of
this study, which gives us some confidence on the PW calculated from HIRLAM/A
profiles.

The PW values retrieved from the radiosonde profiles are lower than the PW
calculated using the HIRLAM model (average bias of 1.2 mm). However, the rms
value of 1.3 mm shows that the precision of the comparison is at the same level as
the standard deviation of both techniques, though they are not totally independent.
The algorithm used in the OI analysis filters the observation increment (observation
departure from first guess) according to the assumed data to first guess error ratio.
The comparison of calculated PW by using HIRLAM/A and radiosonde atmospheric
profiles have been included to show the analysis filter performance.

Table (4.2) summarizes the site-by-site comparison between PW estimates and
PW modeled for the entire experiment. The PW rms value of 2 mm is in agreement
with the standard deviation of each technique and indicates the level of precision
expected for future studies in which GPS data will be assimilated in NWP models.
Figure (4.8) compares PW estimates and PW modeled for all the GPS sites and entire
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campaign. The HIRLAM model reproduces reasonably well the PW measurements
around values of about 15 mm. However, below this value there is a tendency for the
numerical model values of PW to be higher than the PW estimates. In contrast, the
PW calculated values are lower than the PW estimates for values higher than 15 mm.
A straight-line fit to this data yields a slope of 0.69 + 0.03, and the x? (per degree of
freedom) is 3.1.

We also analyzed the PW values obtained with the HIRLAM/F in order to assess
the ability of the NWP model to forecast the precipitable water. Figure (4.9) shows
GPS-derived estimates of PW at Robledo during the passage of the second front.
The figure also shows the 6-hourly HIRLAM/A PW and the 3-hourly HIRLAM/F
values. Unfortunately, it was only possible to obtain values of the PW calculated by
HIRLAM/F every 3 h since these were the only available simulations in an operational
way at the INM. For the HIRLAM/F results, and comparing with the HIRLAM/A,
the rms increases with the forecast range up to 3 mm in 24 h. A similar feature is
found for the bias (-1.2 mm). An underestimation of the PW modeled is found when
comparing to PW estimates from GPS. As it was expected, the analysis at 00 and 12
UTC, which have made use of radiosonde data, produces a PW value very close to
PW estimates by GPS.

4.1.6 Conclusions

We have studied the spatial distribution and the temporal evolution of atmospheric
water vapor in terms of precipitable water using GPS. The GPS data used in this
experiment were acquired during 2-15 December, 1996, in the Madrid Sierra, Spain.
We operated a total of five GPS stations that spanned a maximum horizontal distance
of 50 km. The atmospheric flow during the time of the experiment was mainly
driven by synoptic scale disturbances. Two frontal systems both associated to large
values of PW crossed over the network on 4-6 and 12-14 December, respectively. The
HIRLAM numerical weather prediction model simulates the PW for this region and
time period. The radiosonde data from a nearby site is used to estimate PW during
this time period. We have carried out a comparison of the PW obtained using all
three methods.

The PW estimates derived from GPS every 30 min and the PW values obtained
from the 6-hourly HIRLAM analysis agree with each other to within 2 mm root-
mean-square (rms). This rms value is consistent with the standard deviation of each

technique. Hence, to improve the products derived from a numerical weather model
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such as HIRLAM by assimilating PW in real time the accuracy of these estimates
should be of mm level, provided that the meteorological conditions are similar to
those encountered in the Madrid Sierra. GPS-derived and radiosonde-derived PW
estimates agree with each other to within 1.6 mm rms. The radiosonde PW estimates
are generally lower than those obtained using GPS and HIRLAM.

In addition, we have used HIRLAM in its forecast mode (HIRLAM/F) to predict
PW from a given period to a maximum time prediction of 24 h at regular intervals
of 3 h. We have found that the bias and the rms between the PW estimates derived
from GPS and the HIRLAM/F predictions increase as the extrapolation time becomes
larger. For example, the PW bias between both techniques is -1.2 mm and the rms
is 3 mm for a 24-h prediction.

The good PW agreement found among all three methods (GPS, HIRLAM and
radiosondes) is very encouraging for the possible use of GPS atmospheric products in
NWP models in the near future. These are promising results since the disparity in the
prognostic skill for precipitation is a consequence of the formation of precipitation
on scales essentially smaller than those resolved by present-day global models and
the lack of mesoscale data with which to initialize regional fine-mesh models. The
availability of such measurements would potentially be useful for studying the distri-
bution of PW on phenomena of smaller spatial scales. The high rate of the GPS data
retrievals suggests the assimilation of PW into NWP models in a four-dimensional
variational context.

The results found in this section show that GPS measurements can detect small
scale fluctuations and therefore can be used to evaluate NWP models with finer

resolution. This will be analyzed in Section (4.2).

An unattended system for the comparison of the GPS-derived ZTD estimates
with the simulated ZTD values carried out with the HIRLAM NWP model has been
established in collaboration with the INM. In the following, we discuss the selected

approach as well as an example of the results of the comparison.

4.1.7 Near real time GPS data processing

We have developed a system to retrieve zenith total delay values at several European
GPS sites in a NRT mode to improve geophysical parameters estimates (Flores at al.
2000b; Cucurull et al. 2001a) and to develop experience to assist the validation of
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some model aspects (Rius et al. 2000).

Figure (4.10) shows the location of the real-time GPS stations. For each station,
1-h interval data is collected from the IGN (ftp://igs.engs.ign.fr) and CDDIS (NASA-
GSFC, ftp://cddis.nasa.gov) servers. The data quality check is based on TEQC
software from UNAVCO. The GPS data are processed with GIPSY-OASIS II package
(Webb and Zumberge 1993). Data files of the last 24 h are merged for each GPS
station.

The objective of the process is to provide estimates of the zenith total delay at
the GPS stations (and clock corrections for the GPS satellites) within the next hour
after data acquisition. The obtained GPS zenith total delays are then compared with
the values modeled with the operational forecast of HIRLAM. The comparisons run
operationally at the IEEC.

At the INM, 6-h temporal series for the analysis and 1-h interval (since year
2000) for the short range forecast are the available simulations in an operational way.
Accordingly, we have used the 00, 06, 12 and 18 UTC HIR and OPR analysis to
simulate the precipitable water variable. In the HIRLAM/F case, we have simulated
the PW values with the HIR and OPR modes for predictions of 1 h up to 24 h for the
analyses verified at 06 and 18 UTC. The forecast range has been extended to 48 h
for the 00 and 12 UTC analyses.

Since the HIRLAM higher grid resolution is about 20 km, we have interpolated,
both horizontally and vertically, the HIR, and OPR model variables to the locations
of the GPS sites before estimating PW by using the methodology described in Section
(4.1.4).

Forward operators of zenith wet delay and zenith hydrostatic delay have been
developed for the HIRLAM model. Simulations of the ZWD, ZHD as well as the
Z'TD are output from the model for both the HIR and the OPR modes. The OPR
run products are interpolated at VILL, MAD2, ZIMM, ONSA, BRUS and WTZR
stations whereas the comparison with the HIR run is carried out at VILL, MAD2,
ZIMM, and WTZR sites.

Figure (4.11) shows the comparison of the GPS-derived ZTD values (black with
error bar in green) with the ones obtained with the HIRLAM model for one selected
day (12 UTC 7 December 2000). The modeled ZTD values are plotted for the HIR
(in blue) and the OPR (in red) runs. In general, the HIRLAM model simulates
Z'TD reasonably well when compared to GPS observations. However, short temporal
variations of ZTD are not accurately modeled by HIRLAM. One of the stations
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(MAD2) presents a bigger bias (and a rms value) when compared with the other
GPS sites. This disagreement between the model and the observations at MAD2
station also appears during other days of comparison and reflects the present non-
operational situation regarding the limitation in the availability of the real time raw
data.

So far, we have used the ZTD times series to monitor the operational forecast of
the HIRLAM model. However, the system that we have developed at the IEEC can

be extended to other meteorological models.
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Table 4.1: Mean and rms PW for the entire 15-day period and during the two front
passages at all GPS stations.

PW Dec. 2-15 | PW Dec. 4-6 PW Dec. 12-14

station height Mean rms Mean rms Mean rms

(m) (mm) | (mm) | (mm) |(mm)| (mm) | (mm)
Escorial 1026 12.2 3.6 11.3 2.1 17.5 2.0
IGNE 715 13.2 3.9 12.4 2.5 18.7 2.4
Robledo T 12.9 3.7 11.6 2.3 18.4 2.2
Valdemorillo 794 13.1 3.7 12.2 2.3 18.5 2.2
Villafranca 596 14.7 3.9 13.7 2.4 20.5 2.5

Table 4.2: PW-modeled and PW estimates bias and rms for the entire period of the

experiment.

station PW bias (mm) | PW rms (mm)
Escorial -0.7 2.0
IGNE 0.2 2.1
Robledo -0.4 2.2
Valdemorillo -0.4 1.9
Villafranca -0.9 2.0
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Figure 4.1: Geographical location of the GPS (triangles) and radiosonde (circle) sites
involved in the experiment. The geoid altitude of the sites is as follows: Barajas
(633 m), Escorial (1026 m), IGNE (715 m), Robledo (777 m), Valdemorillo (794 m)
and Villafranca (596 m).
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Figure 4.2: Contour plot of the topography of the region and the location of the
five GPS stations. Altitude is in meters above sea level. (BARA: Barajas, ESCO:
Escorial, ROBL: Robledo, VALD: Valdemorillo, VILA: Villafranca.)
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Figure 4.3: Low-resolution, HIRLAM/A maps of low level atmospheric flow for (a)

12 UTC 13 Dec, and (c) 00 UTC 14 Dec. The contours represent
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Figure 4.4: Surface analysis [from the Deutscher Wetterdienst (DWD), Germany] of
atmospheric flow for 00 UTC 12 December 1996
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Figure 4.5: GPS-derived precipitable water as a function of time for, from top to
bottom: (a) Escorial, (b) IGNE, (c) Robledo, (d) Valdemorillo, and (e) Villafranca.
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Figure 4.5. (Continued)
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Figure 4.6: The 30-min averaged GPS-derived precipitable water as a function of
time at Robledo (continuous line) and Escorial (dashed line) during the passage of a

second frontal system in 12-14 Dec.
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Figure 4.7: Estimates of PW from GPS measurements (continuous line), from
HIRLAM calculations (diamond) and from integrated radiosonde profiles (stripe with
error bars) vertically integrated at IGNE site, as a function of time. The standard
deviations of the PW estimates are about 1 mm (see text) and have not been plotted
for clarity. The uncertainties on the radiosonde PW estimates due to the meteoro-
logical sensors are shown with their error bars. The HIRLAM PW uncertainties are

about 1.7 mm and are not shown.
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Figure 4.8: Comparison of PW estimates against PW modeled for all the network

and for all the campaign. The dashed line shows the results of perfect correlation.
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Figure 4.9: The Robledo station PW estimates (continuous line) vs PW modeled
with the HIRLAM/A (diamond) and HIRLAM/F (cross).

47



=

Real Time GFPS Stations

foilig i e o 0" @ "

p" Nk

Figure 4.10: Location of the near-real time GPS sites.
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4.2 The MM5 model: September 1999

In the previous section, we have performed a comparative study of the spatial and
temporal distribution of the water vapor content as obtained with GPS and modeled
with HIRLAM on a small scale (5-50 km). However, a low resolution hydrostatic
model was used and the focus was mainly addressed to analyze the GPS-derived PW
in synoptic situations. It is therefore necessary to further investigate if these conclu-
sions found in the previous work still apply when high resolution models are used, i.e.
non-hydrostatic models (Cucurull and Vandenberghe 1999), and for situations where
trigger mechanisms such as surface heating or orographic uplift can lead to sudden
changes in the water vapor distribution (Cucurull et al. 2001b).

The western Mediterranean is frequently affected by situations connected with
heavy rainfalls over localized areas (less than 50 km) and during a short time (less
than two hours). These events are mostly the results of mesoscale convective systems
(Llasat and Puigcerver 1992; Ramis et al. 1994; Codina et al. 1996; Romero et
al. 1998) which are closely related to the land surface heat flux conditions and the
topography of the area.

The aim of this section is to use precise and continuous measurements of the water
vapor column by means of the GPS technique to study the evolution of a mesoscale
convective system at the northeast coast of the Iberian Peninsula. This region has
complex orography and the surface conditions are very heterogenous (from heavily
urbanized areas to forest and bare soil). The GPS observations are compared to
the ZTD values calculated by means of fine-scale modeling for the same situation by
using the MM5 Modeling System (Anthes and Warner 1978; Dudhia 1993; Grell et
al. 1994).

The case study is carried out on 14 September 1999 during the evolution of a
mesoscale convective system which produced a large amount of precipitation in the
area. In order to asses the dependence of the GPS data on the meteorological sit-
uation, an additional day with absence of precipitation and low moisture variability
was selected (10 September 1999).

A continuous monitoring of the ZTD is carried out by five GPS receivers located
at several sites in the NW Mediterranean region. The contributions to the ZTD
fluctuations are analyzed in terms of the two components (Davis et al. 1985; Bevis et
al. 1992): the ZHD and the ZWD. The ZHD is the largest term and can be accurately
calculated if measurements of surface pressure are available (Saastamoinen 1972). The

ZWD is associated with the atmospheric water vapor and is very difficult to model
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because this variable is highly variable in space and time (Emardson et al. 1999).
From the ZWD, one can derive the PW variable (1 ¢cm of ZWD converts to around
0.15 cm of PW) (see Section 3).

4.2.1 Meteorological description

The meteorological situation under study was the result of the interaction of two
atmospheric phenomena. On 14 September 1999 around noon a thermal low was well
developed above the center of the Iberian Peninsula. The Meteosat imagery at 12
UTC 14 September 1999 is shown in Figure (4.12). The origin of the thermal low is
a synoptic situation characterized by a low pressure area over the North of Africa,
Mediterranean sea, and eastern coast of the Iberian Peninsula which is reinforced by
the intense heating of the land surface in the previous days. During the afternoon this
system moved eastward due to the passage of a sharp and deep trough which crossed
the Iberian Peninsula with a NW-SE jet stream behind the trough axis. This trough
simultaneously intensified the cyclogenesis over eastern Iberian Peninsula and the
Mediterranean sea. At 18 UTC the low center was situated above the eastern coast
(see Figure 4.13). As a result, moist and warm air was advected from the Mediter-
ranean into the NE of the Iberian Peninsula and the Gulf of Lion. The radiosonde
measurements showed at 00 UTC on September 15 a nearly saturated atmosphere
from above 850 hPa up to 200 hPa. The synergism of the surface phenomena, low
level advection of moist and warm air, and upper conditions, through transporting
cold air and intensifying the cyclogenesis and convection over the area, was the origin
of the active mesoscale convective system over NE Iberian Peninsula.

The rainfall precipitation measured was 80 mm in the East of Catalonia between 00
UTC 14 September and 00 UTC 15 September. At several stations this precipitation
fell in a short time and with high intensity (for instance, in the city of Barcelona
55 mm within 40 min with 3 c¢m hails). The intense rainfall that produced the
mesoscale convective system over Catalonia from 00 UTC 14 September to 00 UTC
15 September is depicted in Figure (4.14) [obtained from the Servei de Meteorologia de
Catalunya (SMC), Spain|. The map is produced from a Cressman objective analysis
of 81 meteorological stations available in the area of interest. The minimum, average
and maximum distances between these sites are 0.02°, 0.12° and 0.33°, respectively.
The analysis uses a grid size of 0.1° and seven iterations with radius of 7,6,5,4,3,2
and 1 times the grid size value (0.1°), respectively.

To compare the GPS observations with the MM5 results under different meteoro-

o1



logical conditions, we have selected a second meteorological event characterized by a
cloudless sky, high temperature, and a high pressure situation. The selected dry and

relative low values of water vapor period corresponds to 10 September 1999.

4.2.2 GPS data processing

The GPS network consists of five Trimble 400SSI GPS receivers operated by the
Institut Cartografic de Catalunya (ICC, Spain). The names and heights above sea
level of these stations are shown in Table (4.3). These GPS sites form baselines
ranging in length from about 100 to 350 km with maximum altitude difference between
GPS sites of about 2400 m. The geographical location of the GPS sites covers from
around 0° to 4°E and from 40°N to 43°N (see Figure 4.15).

We use the GPS precise orbits and clocks as well as consistent earth-rotation pa-
rameters provided by the International GPS Service (IGS) together with the GIPSY /OASIS-
IT (version 4) software package (Webb and Zumberge 1993) to estimate ZTD (taken
every 15 min) at the five GPS sites with a formal error of 0.5 cm. This software uses
a stochastic filter to provide time-dependent estimates of the atmospheric delays for
each site.

4.2.3 Model simulation

The NCAR/Penn State MM5 Modeling System is used to simulate the ZTD variable.
The MMS5 is a primitive equation, finite-difference based non-hydrostatic mesoscale
model. It uses a sigma vertical coordinate defined in terms of a time independent

reference pressure py,

Po—DP
== P =ps— Py (4.2)

where p,; and p; are the surface and top reference pressures of the model, respectively.

MMS5 variables are coupled with p* which is a time-independent 2-dim model constant.

We set up three (2-way nested) domains with grid distance ranging from 54 km
down to 6 km. At the finest domain the grid dimensions are 82 grid points in the
north-south direction, 97 in the east-west direction, and 24 vertical sigma levels (see
Figure 4.13). A 5 min topographic source is used for the third domain. To investi-
gate the impact of modeling with finer grid resolution and more accurate topography

source, we have defined five additional nested domains, each one centered at the
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location of a GPS receiver. In these fine domains, a grid resolution of 2 km is pre-
scribed with a mesh of 52 x 52 x 24, and a 30 sec topography source. The physical
options used are: the high-resolution Blackadar parameterization of the planetary
boundary layer (PBL), multi-layer soil model, the simple scheme of Dudhia (1993)
for explicit moisture parameterization, and the clouds are explicitly solved for the
smaller domains (grid resolutions of 6 km and 2 km).

The initial and boundary conditions are provided by the ECMWEF analyses at 00
UTC 10 and 14 September 1999 in order to study the two different meteorological
situations. Both simulations are integrated for a 24 h period. ZTD values are cal-
culated (15-min interval) at all grid points by adding the simulated ZHD and ZWD
components. A bilinear interpolation from the four closest grid point values is used
in the horizontal in order to estimate the simulated ZTD at the GPS sites.

4.2.4 Z'TD differences due to the meteorological situation

The development and evolution of a mesoscale convective system is studied in terms of
the ZTD differences at a maritime (EBRE) and a mountain (LLIV) stations. First, we
have used the model resolution of 6 km and a topography source of 5 min to simulate
the ZTD variable at these GPS sites. In the simulations, the same parameterization
of physical processes is used.

Figure (4.16) shows the 3-h interval rms fluctuations of ZTD and the PW mod-
eled by means of MM5 for 14 September 1999. (All the rms values are calculated
around the mean value). The increase in the rms value at selected sites during the
second half of day 14 (more than 1 cm of ZTD) reveals a high variability of the
Z'TD variable during this period which corresponds to the activity of the mesoscale
convective system. The fluctuations of the ZTD are mainly the ZWD contribution
due to the variations in the water vapor content. This can be also observed in the
figure where the modeled PW variable has been represented at the same sites and
for the same period. The rise and high variability of the PW starting at about 12
UTC 14 September correlates with the increase of the rms value and with the large
precipitation recorded in the area. During 10 September (clear day), there is almost
no variation in the ZTD fluctuation, and the average rms values for LLIV and EBRE
sites are 0.3 cm of ZTD. A similar behavior is found for the rest of the GPS stations.

We next turn our attention to compare the differences between the GPS-derived
Z'TD values and the ZTD simulations using MM5 with the grid resolution of 6 km.

The frequency distribution of these differences for 14 September are presented in
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Figure (4.17a). The histogram for LLIV station (grey) shows its maximum frequency
between 5 and 6 cm of ZTD difference with an average bias of 5.5 cm (observations
values are higher than the MM5 results) and a rms value of 1.4 cm. The coastal site
error distribution (white) presents an average bias of 1.0 cm of ZTD (observations
are higher than the model simulations) and a rms of 2.2 cm of ZTD. In that case,
the data distribution is more centered at zero but the rms of the histogram is higher
than for the mountain station.

In order to study the impact of the meteorological conditions on those frequency
distributions, Figure (4.17b) shows the same analyses of distribution but for 10
September 1999. Although there is still some positive bias between the observa-
tions and the modeled ZTD (average bias of 4.5 cm of ZTD at LLIV and 0.8 cm of
ZTD at EBRE), the data distribution is more centered around its mean (rms of 1.0
cm at LLIV and 1.6 cm at EBRE) which corresponds to a lower variability of the
Z'TD differences between the model and the observations. This is reasonable since we
have found that in clear days the evolution of ZTD shows lower variability than in a
stormy period. Similar results are found for the other stations treated in the study.

As Figure (4.17) shows, the mountain station has a large bias in 14 September,
while a lower bias is obtained for the coastal site. When the clear day is analyzed
the average bias decreases by around 20 % of its original value at both GPS stations.
This reduction may be due to a decrease of the differences between the observed and
modeled ZHD or it may be attributed to a more accurate modeling of the PW variable
during the clear day. Measurements of surface pressure at GPS sites are needed to
evaluate the former in order to compare the observed pressure data with the values
predicted by the meteorological model and thus evaluate the ZHD term. The only
ground-based receiver from our GPS network that operates a barometer is CREU
station. For this site, the average bias between the observed pressure and the values
obtained with the model accounts for around 2 cm of ZHD (modeled values higher)
in both meteorological situations. However, there is a slightly decrease in the average
PW difference during 10 September 1999. Therefore, the decrease of the average
ZTD bias is due to the water vapor contribution term (ZWD), while the hydrostatic
component remains unchanged. As a consequence, the reduction of the average ZTD
bias accounts for about 1.5 mm and 0.3 mm of PW at LLIV and EBRE stations,
respectively.

The variability of the water vapor content slightly reduces the differences between

the ZTD observations and the modeled values, but it is not the main source for such
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a bias. In the next section, we analyze this average bias by simulating the mesoscale
convective system with a finer grid and topography database.

4.2.5 ZTD differences due to the topography and model res-

olutions

We have selected two model configurations to analyze the impact of the topographic
and modeling resolutions on the ZTD differences between observations and modeled
values. We have used a topography source of 5 min for the lower model resolution
tested (6 km) and the fine data set of 30 sec for the higher grid resolution (2 km).
The physical processes were parameterized in the same way for both cases.

The elevations from the different topographic sources are shown in Table (4.3).
The mountain stations ESCO and BELL are better represented by the 30 sec resolu-
tion source when compared to the GPS heights, but we do not find the same situation
for the coastal sites and LLIV. Both, the 5 min and 30 sec landuse categories mis-
represent CREU station, which is described as a water body. It should be mentioned
that this station is situated on a cliff. The lower resolution topography results are
more appropriate than the 30 sec source to model the height of EBRE station. For
LLIV, the difference between the station height and the elevation modeled using the
5 min and 30 sec topography sources is the same. Therefore, we can not expect an
improvement on the ZTD simulation with the use of a finer terrain database.

Figure (4.18) shows the frequency distribution of the ZTD differences between
observations and modeling simulations at ESCO station for 14 September. The grey
histogram corresponds to the lower topographic resolution, whereas the white his-
togram depicts the ZTD differences calculated with the finest data set. The average
bias of these ZTD fluctuations is largely reduced when the 30 sec topography source
is used. Although the frequency of the distribution is similar in both histograms, the
Z'TD values simulated using the finest topographic data agree better with the obser-
vations than when the coarse data resolution is used. This means that the impact of
the topography is to reduce (for the fine source) or to increase (for the low resolution
source) the average ZTD bias (mainly through the ZHD contribution). However, it
does not affect the variability (rms) of these differences.

This result shows that the ZTD value strongly depends on the height of the
GPS station, but its variability is mainly driven by the meteorological conditions
as was shown in the previous section. We have found similar results for all the
GPS sites analyzed in this study (Table 4.3). The table shows the average bias
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and rms values for the two topographic sources tested. The average bias decreases
largely at mountain stations when the fine topography is used. The resolution of
the selected source slightly affects the mean difference at CREU, which is consistent
with the inaccurate height given by the topography data source. Although the lower
topography resolution source simulates slightly better the orography of EBRE site, a
smaller reduced bias is obtained with the fine data set. This is mainly caused by a
more appropriate vegetation category from the 30 sec source and the use of a higher
model grid resolution.

The ZTD variable depends on the atmosphere layer depth between the GPS satel-
lite and the receiver. This value increases for denser atmospheres and longer trajecto-
ries of the signal. As a consequence, for a given atmospheric profile, the ZTD variable
will be larger at the receivers located at the sea level in comparison to those situated
on mountain tops. From the table, all the stations which have a model height below
(above) the GPS sites present a larger (smaller) simulated ZTD than the observed
values. For instance, ESCO has a real value of 2458 m compared to the 2310 m given
by the 30 sec data source. As a result of this difference, the ZTD bias is negative
(-7.1 cm).

The increase of the ZTD differences between observations and modeled values
with the use of the 5 min topography resolution when compared to the finer data
set may be explained in two ways: (a) it may be caused by a bias in the station
pressure entering in the ZHD calculation due to the low terrain resolution or (b) it
may produced by innacurate predictions of the PW content. In order to analyze these
two different contributions, the average ZTD difference between the use of the low
and high topography resolutions are shown in Table (4.4) for all the stations.

The table also includes the hydrostatic contribution to the ZTD bias due to in-
nacurate modeling of the surface pressure variable due to the use of the low terrain
data set. The highest differences in the ZHD variable between both topographic
sources are found for the mountain stations, which are the stations with higher dif-
ferences between 5 min and 30 sec derived elevations. Since the elevation of CREU
is always inaccurately given by both data sets, no differences are found for the sim-
ulated ground pressure variable. As opposite to this coastal site, all the ZTD bias is
attributed to the hydrostatic term at EBRE site.

The remaining average difference of ZTD when using different topography and
model resolutions can be attributed to the moisture content of the atmosphere. The

average difference between the PW simulations with the use of a low and fine terrain
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data sets is also shown in Table (4.4). Generally, the lower model resolution results
in an overestimation of the PW variable compared to the finer simulation during 14
September. The opposite situation is only found at LLIV station, which also showed
a negative biased ZTD difference. We also note that the average PW difference
between using the lower and higher topography sources is larger at mountain stations
and ranges between 1 mm and 2 mm of PW.

We next investigate the hydrostatic and moisture contributions to the average
difference between the GPS-derived ZTD and the values simulated with MM5 (see
Table 4.3).

4.2.6 Corrections to remove the ZHD bias

We have already shown the bias in the ZTD differences that is caused by using
topographic sources of different resolutions. The major part of this bias comes from
the inaccurate calculation of the hydrostatic component (ZHD). In the following, we
propose a procedure to correct for this bias.

The modeling of the ZHD using the coarse and fine topography data sources
is used to infer the hydrostatic component of the average ZTD difference between
observations and model simulations. This component is estimated by analyzing the
differences between the pressure values predicted for the locations of the GPS sites as
a function of the height increment. The pressure calculation is mainly governed by the
hydrostatic equation (non-hydrostatic effects are of second order) and depends on the
physical options selected in the model, on the latitude, and on the weather situation.
The correction to remove the ZTD difference bias due to the ZHD contribution can
be easily applied to other meteorological models.

Figure (4.19) compares the average ZTD difference between the observations and
the simulated values against the difference between the stations and modeled heights
for the topographic sources under study. A straight-line fit to these data yields a
slope of —0.024 £ 0.003 (for the 5 min source, in asterisk), and —0.013 4 0.010 (for
the 30 sec source, in diamond). The x? (per degree of freedom) are 1.3, and 0.7,
respectively. In the figure, the dashed line fits the average ZHD differences between
the model simulations with the use of the 5 min and 30 sec topography sources as
a function of the altitude increment Az (in cross) which are summarized in Table
(4.4). This line yields a slope of —0.0225 + 0.0004 and gives the ZTD variation as
a function of the altitude increment assuming that the atmosphere is in hydrostatic

equilibrium. For instance, ESCO has an elevation of 2458 m compared to the 2097
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m given by the 5 min topography source. As a consequence, Az = 361 m and the
expected average ZHD difference between the observations and the model simulations
is 361 x (—0.0225) = —8.1 cm.

The main difference between the ZTD derived from GPS and MM5 arise by the
inaccurate values of the topography. The contribution to the average ZTD difference
by assuming hydrostatic equilibrium is summarized in Table (4.5) for all the stations.
The largest values of the derived ZHD differences are found at mountain stations
for all the topographic sources tested in this study. As expected, no differences are
found at CREU station between both terrain data sets. The value obtained at this
coastal site (-1.9 cm of ZHD) is consistent with the average ZHD derived from the
differences between the modeled and observed surface pressure values (see Section
4.1). This good agreement confirms the validity of the slope of —0.0225 used to infer
the average ZHD difference from estimates of ZTD differences.

The remaining average bias of ZTD may be explained in terms of the high PW
fluctuations due to development and evolution of the mesoscale convective system.
This average bias on the moisture field ranges from -1.4 to 3.7 mm of PW for the low
resolution terrain database, and from -0.6 to 2.9 mm of PW for the fine topographic
data set. In general, the simulations of PW underestimate the moisture content of
the atmosphere when compared to the derived observations. The model only predicts
a surplus of humidity field at CREU station. The largest PW differences are found
at mountain stations, which also showed a higher average ZTD bias. A distinctive
element of the table is that although the elevation of the GPS stations is in general
better modeled with the use of the fine topography source, the simulation of the
PW wvariable is not always improved by using a higher terrain resolution because it
depends on the physical parameterization. The coastal and LLIV stations reduce
their average PW bias when using the 30 sec topography source, while ESCO and
BELL sites increase the average difference between observed and modeled PW with
the fine database by around 1 mm of PW.

4.2.7 Conclusions

The zenith total delay observed and modeled during the occurrence of a mesoscale
convective system is studied. The emphasis is placed to analyze the hydrostatic and
moisture contributions to the differences between the ZTD observed and calculated
in a situation with high water vapor variability. The impact of the topography and

model resolutions is studied by doing simulations with different resolutions.
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The area under study is the NW Mediterranean region which is characterized by
complex orography and heterogenous land surface conditions. The case selected was
14 September 1999 due to the large precipitation recorded in the area and the high
variability of the water vapor content. In order to compare the dependence of the
Z'TD results on the meteorological situation we also analyzed a clear day with high
temperature and absence of precipitation.

Significant average bias between the observed and modeled ZTD values are found
for the stormy meteorological situation at mountain stations using the lower model
resolution tested in the analysis (6 km). Such biases are largely reduced when a
fine 30 sec topography source and a higher grid resolution are used. However, the
rms values are large for all topographic sources which indicates an increase of the
variability of the ZTD differences between observations and modeled values during
periods of high variability in the water vapor content. For the clear day, the average
bias is only slightly reduced and this is found to be associated to the moisture content
of the atmosphere. The rms errors largely decrease at all GPS stations.

Important differences are found in the average ZTD bias when different topog-
raphy data sets are tested. Probability distributions of the ZTD differences show
reasonable data distributions with large biases at mountain stations with the 5 min
topography source and the low resolution model. These bias are mainly due to the
large height differences between the GPS station elevation and the model topography.
The use of a finer topographic data source and a higher grid resolution, results in
a reduction of these ZTD differences. This reduction is due to a better simulation
of the ZHD since the topography is better represented. We have proposed a correc-
tion for the topography-derived error contribution to the ZTD differences between
observations and modeled simulations.

The remaining average bias is attributed to innacurate water vapor values given
by the representations of the physical processes in the model. It is also found that
the model tends to underestimate the moisture content of the atmosphere during the

stormy situation analyzed in this study regardless of the topography source used.
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Table 4.3: Altitude of the GPS stations and elevation from different topographic
sources, together with the average bias and rms (in brackets) between GPS-derived

Z'TD and MM5 modeled values for all the stations. M: mountain site, C: coastal site.

Source ESCO (M) | LLIV (M) | BELL (M) | CREU (C) | EBRE (C)
station height (m) 2458 1418 803 83 58
5 min height (m) 2097 1553 652 0 71
ZTD bias and rms (cm) | -7.1 (0.7) | 5.5 (1.4) | -2.4 (1.8) | -2.8 (1.3) | 1.0 (2.2)
30 sec height (m) 2310 1273 726 0 14
ZTD bias and rms (cm) | -1.4 (0.7) | -2.3 (1.3) | -0.1 (1.7) | -2.6 (1.1) | -0.4 (2.1)

Table 4.4: Average difference and rms (in brackets) between the model simulations

of ZTD, ZHD and PW variables with the use of a 5 min topography source and the

values obtained with a 30 sec finer terrain database.

station | modeled ZTD bias (rms) | modeled ZHD bias (rms) | modeled PW bias (rms)
(cm) (cm) (mm)
ESCO (M) 5.7 (0.5) 4.5 (0.1) 1.8 (0.8)
LLIV (M) 7.8 (1.0) 6.5 (0.1) 2.1 (1.6)
BELL (M) 2.3 (1.0) 1.7 (0.1) 0.9 (1.5)
CREU (C) 0.2 (0.6) 0.0 (0.1) 0.3 (0.9)
EBRE (C) 1.4 (0.8) -1.5 (0.1) 0.1 (1.3)
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Table 4.5: Contribution of the surface pressure (related to ZHD) and moisture variable
(related to PW) to the average ZTD difference between the GPS-derived observations

and model simulations with the use of 5 min and 30 sec topography sources.

Source ESCO (M) | LLIV (M) | BELL (M) | CREU (C) | EBRE (C)
5 min
ZHD bias (cm) -8.1 3.0 -3.4 -1.9 0.3
PW bias (mm) 1.4 3.7 1.5 -1.4 1.1
30 sec
ZHD bias (cm) -3.3 -3.3 -1.7 -1.9 -1.0
PW bias (mm) 2.9 1.5 2.5 -0.6 0.9
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Figure 4.12: Meteosat imagery at 12 UTC 14 September 1999.
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Figure 4.13: Surface analysis (from The Met. Office, UK) of atmospheric flow for
18 UTC 14 September 1999 (the large arrow shows the location of the trough axis),
geographical location of the GPS sites (E for ESCO, L for LLIV, C for CREU, B for
BELL, Eb for EBRE), and the 6-km grid resolution domain simulated with the MM5

model.
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Figure 4.14: Observed accumulated precipitation (mm) over the 24-h period ending
at 00 UTC 15 September 1999.
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Figure 4.15: Geographical location of the GPS sites (triangles) used in the experiment
and the (2-way nested) inner domains simulated with the MM5 model. The geoid
altitude of the sites is the following: BELL (803 m a.s.l.), CREU (83 m a.s.l.), EBRE
(58 m a.s.l.), ESCO (2458 m a.s.l.) and LLIV (1418 m a.s.l.).
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Figure 4.16: 3-hour interval rms ZTD errors (x LLIV, ¢ EBRE) and modeled precip-

itable water (continuous line) as a function of time at LLIV and EBRE stations.
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Figure 4.17: Frequency distribution of the differences between the GPS-derived ZTD
observations and the modeled values (low grid and topography resolutions) at LLIV
(grey) and EBRE (white) stations during (a) 14 September 1999 and (b) 10 September

1999.
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Figure 4.18: Frequency distribution of the differences between the GPS-derived ZTD
observations and the modeled values at ESCO station during 14 September 1999
using a 5 min topographic and land-use sources (grey) and 30 sec topographic and

land-use data sets (white).
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Figure 4.19: Comparison of the ZTD differences between the GPS estimates and MM5
modeled values as a function of the altitude increment (Az) for 5 min (asterisk), and
30 sec (diamond) topographic sources for 14 September 1999. The dashed line (-0.022
Az - 0.134) fits the average ZHD differences between the model simulations with the
5 min and 30 sec topography sources as a function of the altitude increment, and

shows the ZTD variation assuming hydrostatic equilibrium in the atmosphere.
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4.3 The MASS model: September 1998

In this section, we briefly describe the recent implementation of the comparison of
the GPS-derived observations with the hydrostatic MASS model (Kaplan et al. 1982;
Kaplan and Karyampudi, 1992), which is operational at the SMC. This model includes
a multi-nest capability and incorporates a high resolution Blackadar type planetary
boundary layer and detailed surface energy and moisture budgets.

At the SMC, the MASS model is run at two different horizontal resolutions, 55
km by 55 km (low resolution run, 55 x 55 grid point distribution), and 10 km by
10 km (high resolution run, 55 x 55 grid point distribution), both with the same
20 levels in the vertical. The coarse domain covers SW Europe and North Africa
while the smaller domain is configured to represent the Catalonian area. The higher
resolution domain is 1-way nested into the coarser domain. The initial and boundary
conditions fort the largest domain are provided by the U.S. National Meteorological
Center’'s Medium Range Forecast model (MRF), and their predictions are used as a
first guess and boundary condition for the finer simulation. See Codina et al. (1997)
for a description of the implementation of this model in Catalonia.

We have selected a 3-day period to compare the GPS-derived ZTD values esti-
mated at two GPS stations with the values calculated by means of the MASS higher
resolution model. The GPS data is processed following the same procedure as de-
scribed in Sections (4.1) and (4.2). The modeled ZTD values are derived from the
PW and surface pressure variables (see Chapter 3). A bilinear interpolation is carried
out in the horizontal direction to estimate the model variables at the location of the
GPS sites.

The nested simulations were initialized at 00 UTC on 21, 22, 23, and 24 September
1998, and all runs were executed for a period of 21 hours. Large amount of precipi-
tation was recorded during 23 September 1998 due to the passage of a frontal system
over Catalonia. Figure (4.20) shows the Meteost imagery at 12 UTC 23 September
1998 and a surface analysis of the atmospheric flow for this day at 12 UTC is depicted
in Figure (4.21). The ZTD variable was output from the model at 3-h interval and
these values were then interpolated to the ground-based receivers location. In addi-
tion, GPS data was available at two GPS stations for days 22, 23, and 24 September
1998.

The results of this intercomparison are displayed in Figure (4.22) for EBRE and
BCN stations. In general the model reproduces reasonably well the main trends of

the observations. However, the NWP model tends to overestimate the ZTD content
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at BCN when compared to GPS data. This feature is also observed at EBRE station
on 23 September 1998. Another distinctive element of the figure is the strong decrease
of zenith total delay at the beginning of 23 September. The MASS model does not
drop the total ZTD amount so sharply. Indeed, the model overestimates this value
with respect to what is observed with the GPS data.

These are preliminary results found with the MASS for the Catalonian region.
Future work should be addressed to improve the methodology developed with the
Universitat de Barcelona (UB, Spain) in order to monitor the MASS short-range

forecast of precipitation during the passage of frontal systems.
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Figure 4.21: Surface analysis (from The Met. Office, UK) of atmospheric flow for 12

UTC 23 September 1998.
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Figure 4.22: Estimates of ZTD from GPS measurements (continuous line) and from
the MASS model (diamond) at (a) BCN and (b) EBRE stations.
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Chapter 5

Variational assimilation of

GPS-derived observations:
1D-VAR

We now analyze the impact of the variational assimilation of GPS-derived observa-
tions on moisture fields.

As a very useful example, in this chapter we first investigate the 1-dim variational
(1D-VAR) retrieval problem by performing a local analysis of one atmospheric column
at the location of the GPS ground-based receiver. The procedure is based on the 1D-
VAR methodology developed at The Met. Office (Healy 1999)

The 1D-VAR assimilation of ZTD will be extended to a global 4D-VAR assimila-
tion problem in next chapter.

5.1 1D-VAR assimilation of zenith total delay and

surface pressure

The PW content of the atmosphere is usually derived from measurements of the
zenith total delay, the surface pressure P;, and the mean temperature 7}, defined in
(3.8).

The relationship between the PW variable and the derived ZWD trough (3.7) is a
function of 7T;,, which depends on the specific area and season. However, as was seen
in Chapter (3), the T, temperature has been empirically found to be well correlated

with surface temperature. For example, Bevis et al. (1992) derived a linear relation
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between the surface temperature and 7,,, and Emardson and Derks (1999) derived
a relation between the zenith wet delay and the precipitable water based on surface
temperature, site latitude, and day of the year.

These methods work well for simple models of the atmosphere (Saastamoinen
1972; Davis et al. 1985) and statistical analysis of meteorological radiosonde observa-
tions (Emardson and Derks 1999). For instance, Askne and Nordius (1986) presented
a formulation in terms of a lapse rate « for the temperature profile and a parameter
A for the water vapor decrease in the atmosphere. They concluded that their formu-
lation was consistent with the Saastamoinen model for a lapse rate of =6.2 K/km
and an exponent A=3. However, when complicated meteorological situations are an-
alyzed, we expect that more precise information on the atmospheric state is needed.
In the following, we study the use of 1D-VAR assimilation technique to retrieve the
moisture content from the GPS-derived ZTD.

The objective of the problem is to determine the analyzed state x, of the atmo-
sphere which minimizes the functional (2.18). Here, H(x) is the nonlinear forward
operator which maps the vector defining the state of the atmosphere, in the vertical
direction, into the space of the observables.

The non linearity of the problem is treated using a Newton descent method. The

required optimal state is found after a few iterations.

5.2 FEvaluation of the assimilation of ZTD obser-

vations

The expression for the total refractivity of the atmosphere (3.3) can be approximated
by

P P,
where ks = 3.82 x 10° K?hPa~! and P is the total pressure. The ZTD is then

k4P,
T2
and applying the hydrostatic equation, this integral can be expressed as

[e') 00 P
ZTD = 10—6/ Ndz = 10—6/ (le + 2y g, (5.2)
0 0

R,TV
Pg

0 k1P k4P,
ZID=10"% | (&= + =2

G+ ) (p) P (5.3)

75



where TV is the virtual temperature in K, g is the gravity acceleration in (m/s?), Ry
is the dry gas constant and P is the surface pressure in hPa. The forward operator
H defined in (2.18) is then the discrete form of the expression (5.3)

kiP, k4P, R, TV
_ —6 144 44 ws . dL; . ]
H=107 D07 + ) () - AP, (5.4)

The parameters P;, T;, P,; and T} are model layer averages, which have to be related
to the model variables. The model variables involved in the computation of the H
operator for this case under study are the temperature and the specific humidity at
the model pressure levels, and the surface pressure. The water vapor pressure and

the virtual temperature are then calculated using the following approximations:

:Pz"(b'

€

T =T,(1 +ct-q) (5.6)

2

where ¢; is the average specific humidity at layer 7 in (gr/kg), € is the ratio of the
molecular weights of water vapor and dry air (e = 621.9 gr/kg) and ¢t = (1 - 1) =
0.608 x 1073,

In (5.4) g, is the acceleration due to gravity at the center mass of the vertical

column. The value at this point is (Saastamoinen 1972)

gm = 9.784(1 — 0.00266c0s(2)) — 0.00028 H )ms > (5.7)

where ) is the latitude of the site and H is the height of the surface above the ellipsoid
in km.

The minimization of the cost function (2.18) requires the derivative of the H
operator with respect to the model variables (2.19). The vector (ﬁ) = H is given

ox
by

OH OH OH OH OH )
a,Tl Y aTn’ 8(]1 T 8(]71’ aPZO

where P,; is the model variable for P; and n is the number of vertical layers. The

H" = ( (5.8)

previous derivatives are computed and simplified.

derivative with respect to Tj:
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OH Ragik.

=-10% (1+4ct-q - AP, 5.9
o (et a) () (59)
derivative with respect to g;:
OH _ kyRg gika | Ract
—=10°%[1+ct g k AP, 5.10
9g; (e Q)engi+(l+Tie)gm] (5.10)
derivative with respect to Pyy:
aH _ (]sk4 Rd
=10"%- (1 +ct-q,)(k — 5.11
Sp = 1070 (L et g (b + ) (5-11)

Above, Ty and ¢, are the surface temperature and specific humidity, respectively.

5.3 Assimilation of simulated ZTD observations

As a test case, a simulated ZTD observation is assimilated to investigate the depen-
dence of the model variables on the assimilation of the GPS-derived observables.
For this case under study, we have selected a standard background profile of the
atmosphere. The x}, is described by a 46-dim vector composed of 30 temperature
values (at 30 decreasing pressure levels), 15 specific humidity layers (at the first 15
decreasing pressure levels) and the surface pressure.
In order to simulate a ZTD observation, a model state (x*) is first generated from

the background profile by adding a perturbation profile,

x' = xp + 0\ (5.12)

where ¢ is the rms error for x, and ) is a unit variance Gaussian deviate vector.

The observation is then simulated by adding another perturbation to H(x).

y = Hx") + 0,2, (5.13)

where once again ), is a unit variance Gaussian deviate and o, is the ZTD rms error.
Once the simulated observation of ZTD is assimilated, the optimal state is com-
puted. This assimilation procedure is repeated a statistically significant number of
times (a few hundred).
We analyzed the obtained innovation vector (i.e. the difference between the back-

ground and the optimal state). In addition, different simulated background covariance
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matrices were tested (diagonal and weakly not diagonal). For this case under study,
we did not assume any topography bias between the observations and the modeled
Z'TD values. That means that the model topography represents accurately the ele-
vation of the observational site. Therefore, the surface parameters (Ps, T, ¢s) are
represented in the model by the first pressure level variables. Such approximation
preserves from any bias between the observation and the modeled ZTD value caused
by an inaccurate model topography.

For instance, when a diagonal B matrix is considered with o; = 1, for ¢ = (1...30)
(we assume 1K error for temperature), o; = 0.05 * xp (%) for i = (31...45) (we assume
a 5% of the specific humidity value for moisture error) and o; = 0.01, for i = 46 (we
assume 0.01 hPa error for surface pressure); and ZTD observations are assimilated
with a rms value of o, = 5 mm, the temperature values of x}, remain nearly unchanged
(relative increment of less than 1 per thousand). However, the humidity variable is
largely modified due to the ZTD assimilation (relative increment of around 30 %).
This seems reasonable since the surface pressure, which is assumed very precise, is
believed to be weakly correlated to the wet component of the atmosphere but strongly

related to the hydrostatic contribution term.

5.4 Evaluation of the assimilation of ZTD and Pg

observations

We next analyze the assimilation of the ZTD variable together with the surface pres-
sure measurements. In addition, and as a more realistic case, we now consider a bias
between the surface pressure measured at the observational site (i.e. the variable P;)
and the ground pressure provided by the NWP model.

Let Py, be the lowest model pressure level above surface. In the meteorological
model parameterization, the surface is represented by the lev layer in the vertical.
Accordingly, the forward operator has to be modified with the (P;— P,) contribution
as follows:

O k1P, k4P RJTY
_ -6 144 44 ws d+ ; . ) i
H =101 + ) (g ) - AP+ Aller) (Peo — Pra) (5.14)

where A(lev) is given by
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kIPlev k4Pwlev Rdﬂzv
Tlev T?ev Plevgm

This approximation is justified because the bias between the surface pressure

A(lev) =~ ( (5.15)

(which is represented by the P, variable in the meteorological model) and P, is
assumed small. The water vapor pressure, temperature and virtual temperature at
the lev level are represented by Pyiey, Tieyr, and Tl‘gv, respectively.

To assimilate pressure observations, the forward operator (5.14) is modified as

follows:

H" = (Hzrp, He,,), (5.16)

where Hzrp and Hp,, are the operators which map the model state to the space of

the observations. This can be described as follows:

Hyrp:x — ZTD (517)
szo X — on (518)

The Hzrp is the H operator defined in (5.14) whereas Hp,, has the linear repre-

sentation

Hp,, = (0,0,...0,1)" (5.19)

Since both observations are decoupled, the J cost function and its gradient V.J

can be rewritten as follows:

J(x) = [x — xp]" B~ [x — xp] + (5.20)

[ZTDobs — Hzrp(x)]" (Rzrp) ™' [ZTDops — Hzrp(x)]) + (5.21)
[Ps — Hp,o (%) (Rp,) " [Ps — Hp,(x)] (5.22)
VJ(x)=2-(B x—xp| — (5.23)
(Hzzo)T(R 7)1 [ZTDgps — Hyrp(x)] — (5.24)
(Bh0)T (Rp,) [P, — Hp (x)]) (5.25)
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In (5.21) and (5.24) the (Rzrp) * and (Rp,,) ' values are the inverse of the ZTD
and surface pressure observations covariance matrices, respectively. In this case,
these matrices are reduced to scalars. Above, the zenith total delay observation is
represented by ZTD ;.

In the following, we investigate the impact of the assimilation of zenith total delay
and ground pressure observations at one selected GPS site and for a period of two

weeks.

5.5 Assimilation of real ZTD and Pg observations

In this section, the assimilation of real observations of ZTD and surface pressure
variables is carried out at Robledo site for the Madrid campaign, which is extensively
described in Chapter (4.1).

Estimates of ZTD were derived from GPS data using a Trimble 400SSE receiver
during 2-15 December 1996. In addition, meteorological data were collected at the
GPS site. As part of the meteorological package, the station operated a well calibrated
barometer. ZTD estimates for the whole campaign every 150 sec are shown in Figure
(5.1) and surface pressure observations are depicted in Figure (5.2). Since ZTD and
P, observations were available during the campaign, both data sets will be assimilated
by means of the 1D-VAR procedure.

HIRLAM analysis (available every 6 h) are used to define the background state.
We define a control vector in a 63-dim space to parameterize the state of the at-
mosphere, where the first 31 components are the temperature values at decreasing
pressure levels. Since the HIRLAM model uses the specific humidity as the water
vapor parameter, the variables from components 32 to 62 are the specific humidity
at the 31 pressure levels, and the 63th component is the pressure at surface.

Figure (5.3) shows the temperature profiles derived from the HIRLAM model
for all the campaign. At each pressure level there are (14 x 4) 56 values for the
temperature variable. The two solid lines correspond to the profiles proposed by
Askne and Nordius (1986) with a lapse rate of «=6.2 K/km and an exponent A=3.
These profiles correspond to a standard atmosphere. It is evident from the picture
that the simple model do not represent correctly the actual state of the atmosphere
analyzed in this study at several pressure levels. We thus expect better results when

using the 1D-VAR algorithm to retrieve the amount of moisture.
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We next calculate the modeled values of the precipitable water and the zenith wet
and hydrostatic delays with the HIRLAM background state.

(1) The PW content of the atmosphere is estimated from the HIRLAM state using

1
gi - AP, 5.26
) 2 (5.26)

The bias between the station surface pressure and the model surface pressure yields

PW = (

1

) : [i q; - AR + Glev (PZO - Bev)] (527)

PW = (
gmp'u Piey

(2) The zenith wet delay is the second term in (5.3) and its discrete form is given
by

ZWD =107 [S(5fe) - (355) - AP + (5.28)
+A,ua(lev) - (Puo — Prey)] (5.29)

with

k4€lev RdT‘;}
lev evgm

A wa(lev) = (

(3) Simulations of the zenith hydrostatic delay are estimated from the first term
in (5.3):

\4
ZHD =107%. (%) [52,(5) - AP + (5.31)
+Azhd(lev) : (PZO - Bev)] (532)
with
TV
Ana(lev) ~ (Fevel) (5.33)

level

The II function defined in (3) can be derived from the ZWD and the PW calcu-
lations by applying (3.7). In addition, this function can also be estimated from the

modeled mean temperature (3.8), which is given by the following expression:
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i) - (he) - AP+ (M) - (580) - (Po — P

Tm — T; Pv,'gfn‘L/ Tiew Prevgm (5.34)
0 A RyTY
Zi(58) - (Fig) - AP+ () - (7550) - (Pao = Pi)

In (5.29), (5.32), and (5.34) the sum is taken from P, to zero pressure.

The modeled PW content of the atmosphere and the ZWD variable are estimated
with the integration of (5.27) and (5.29). The ratio [I"'=(ZWD/PW) obtained with
the HIRLAM background profile is shown in Figure (5.4) as a function of the surface
temperature for all the campaign. In the picture, continuous lines are the contour
lines provided by the integration of a large number of radiosonde profiles whereas the
dashed line represents the best fit to the data using the polynomial model for the
Mediterranean area (Emardson and Derks 1999). From the figure, most of the values
obtained using the numerical model fit the dashed line. However, some profiles that
correspond to surface temperature values around T,= 280 K yield lower II"! values
than when those are compared to the polynomial model fit.

The results shown in Figures (5.3) and (5.4), and the availability of the GPS-
derived observations, motivated us to use the 1-dim variational technique instead
of the standard procedure to retrieve the moisture content of the atmosphere. For
this purpose, observations of ZTD and P, were assimilated every 6 h for all 15-day
campaign to get the optimal state of the atmosphere. Simulations of PW, ZWD, and
ZHD were estimated from the optimal profiles following (5.27), (5.29), and (5.32),
respectively. The zenith total delay was given by the sum of the ZWD and ZHD
variables.

The difference between the observations of zenith total delay, derived with the
GPS technique, and the values estimated with the HIRLAM profiles prior to data
assimilation is represented in Figure (5.5) as a function of time. We find an average
bias of 3.4 mm of ZTD (GPS-derived ZTD values are higher than those modeled
with HIRLAM). This small bias may be caused by two contributions: the hydrostatic
component, which depends basically on the surface pressure, and the wet term, which
is estimated from temperature and humidity profiles. Since the bias between the
modeled and the observed surface pressure ranges between 0.1 to 1.2 hPa (which
converts to about 1.4 mm of ZHD), the contribution of the wet component to the
Z'TD bias should account for around 2 mm.

The IT~! function is obtained from the ratio ZWD/PW and is then compared with
the value derived from the estimation of the mean temperature 7,,. The results show
that both methods agree at 1 % level.
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In the following, we compare the derived moisture content obtained with the 1D-
VAR algorithm with the PW value retrieved using other procedures. We analyze two

different situations depending on the precision of the observations to be assimilated.

As a first case study, we start with the assimilation of observations which are
assumed very precise (0zrp = 3.5 mm and op, = 0.01 hPa).

Temperature profiles are reasonably well reproduced by NWP models. However,
this is not the case for the moisture component, which is much more difficult to model.
Consequently, if we assume small variances for the temperature variable and higher
values for the moisture profile, the assimilation procedure will modify the humidity
values (and therefore the PW content of the atmosphere) but the temperature profile
will remain almost unchanged. According to that, we chose for the background co-
variance matrix (assumed diagonal) an error of 0.1 K for the temperature variable and
a humidity error which varies from 1 gr/kg to 0.01 gr/kg depending on the vertical
pressure level. The error for the HIRLAM surface pressure is set to 1.5 hPa.

Results of the 1D-VAR assimilation procedure are displayed in Figure (5.6). The
figure shows the difference of the PW content of the atmosphere analyzed by the
HIRLAM model with and without the variational assimilation of ZTD and surface
pressure observations. This difference results in an average bias of about 0.5 mm
of PW (precipitable water from the optimal state is slightly higher than when it is
calculated from the background state) and a higher rms value of around 4 mm of
PW.

In Section (4.1), the ZHD was calculated from surface pressure measurements
using (3.6). This quantity was then removed from the observed ZTD to derive the
ZWD term which was converted to PW using a II"! value of 6.6. It is interesting to
compare these results found in the previous chapter with the PW estimated by using
the 1D-VAR procedure. This intercomparison is shown in Figure (5.7) as a function
of time. The difference between both methods results in a bias value of less than 0.5
mm of PW. As a consequence, we can conclude from our results, that for the used
covariance matrices and for this analyzed campaign, the use of [I"! = 6.6 is a good

approximation.

In the following, we investigate if the results found for the assimilation of very
precise observations are modified with the use of more relaxed observational and
background covariance matrices. For this purpose, we increase the error associated

to the observations by assuming now an error of 6 mm for the GPS-derived ZTD and
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1 hPa barometer error for the surface pressure. The background covariance matrix
is still assumed diagonal (i.e. model variables are uncorrelated), with 1 K error for
the temperature variable and a humidity error of o(¢q) &~ ¢. This error configuration
corresponds to a more realistic situation.

The difference between the PW variable estimated by the integration of the
HIRLAM background profile and the PW obtained from the optimal state for this
case under study, is shown in Figure (5.8) as a function of time. There is not much
variation from the results obtained in Figure (5.6) where the observations were as-
sumed more precise. We find now again an average bias of 0.5 mm of PW (the results
obtained after the assimilation are higher than the modeled values) and a slightly
higher rms value of around 4.5 mm of PW.

Figure (5.9) compares the PW estimates from the numerical weather prediction
model against the values obtained after the assimilation procedure. A straight-line
fit to this data yields a slope of 0.68 +0.06, and the x? (per degree of freedom) is 3.1.
A distinctive element of the figure is that the HIRLAM model underestimates the
moisture content with respect to the optimal state of the atmosphere around values
of about 15 mm. In contrast, the model tends to overestimate the moisture content of
the atmosphere below 10 mm of precipitable water. The same results were found in
the previous chapter when PW variable modeled with HIRLAM was compared with
the GPS-derived PW values.

We finally compare the results obtained with the variational technique against the
PW values estimated with the polynomial model proposed by Emardson and Derks
(1999) for the Mediterranean area. In this model, the IT=! function is given by

' =ag+a - AT +ay - AT? (5.35)

where AT? is the surface temperature minus the mean surface temperature 7 for the
area in K. For the Mediterranean area, ag = 6.324, a; =-1.77 x 102K, ay = 7.5 x
10~° K=2 and Ty = 289.76 K.

The difference between the PW variable obtained using the polynomial model
from above and the value obtained with the 1D-VAR algorithm is shown in Figure
(5.10) for all the campaign. From the figure, we note that the derived moisture
content does not depend on the used technique. The average bias of the comparison
is 0.3 mm of PW (the polynomial model yields a slightly higher PW variable than the
variational assimilation technique) and a rms value of only 0.2 mm of PW. This can
be also shown in Figure (5.11) where the PW variable retrieved using the polynomial
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model is compared with the value obtained from the optimal state of the atmosphere.
A straight-line fit to this data yields a slope of 1.02 4 0.01, and the x? (per degree of
freedom) is 0.06.

We can conclude from our results that the PW variable retrieved with the 1D-
VAR assimilation technique is equivalent to the moisture content derived with the
standard procedures. This is probably caused because the meteorological conditions
for the Madrid campaign can be represented accurately enough by simple models of
the atmosphere. We should look for more interesting meteorological situations in
order to get an improvement in the retrieval of the PW using the 1-dim variational
assimilation technique.

In the following chapter, we are going to extend the variational assimilation of
Z'TD in a one-dimensional space to a global four-dimensional variational assimilation

problem.
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Figure 5.1: GPS zenith total delay at Robledo site as a function of time.
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Figure 5.2: Surface pressure at Robledo site as a function of time.
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Figure 5.3: Temperature profiles derived from the HIRLAM model for all the cam-
paign (dashed line) and Saastamoinen profiles corresponding to the minimum (lower

solid line) and maximum (upper solid line) surface temperature of the campaign.
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Figure 5.4: The (ZWD/PW) ratio as a function of the surface temperature for all
the campaign using the HIRLAM model (dots), the integration of radiosonde profiles
(solid lines) and the polynomial model (dashed line).
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Figure 5.5: Difference between the ZTD derived from GPS data and the ZTD simu-
lated with the HIRLAM model as a function of time.
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Figure 5.6: Difference between the PW variable obtained with the 1D-VAR procedure
and the PW modeled with the HIRLAM profiles for the 15-day campaign. For the

variational case, the observations are assumed very precise.
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Figure 5.7: Difference between the PW variable obtained with the 1D-VAR procedure
and using a standard II=! value of 6.6 for the 15-day campaign. For the variational

case, the observations are assumed very precise.
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Figure 5.8: Difference between the PW variable obtained with the 1D-VAR assim-
ilation technique and the PW derived from the HIRLAM model as a function of

time.
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Figure 5.9: Comparison of the PW variable modeled by HIRLAM against the PW
value obtained with the optimal atmospheric profile for all the campaign. The dashed
line shows the results of perfect correlation.
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Figure 5.10: Difference between the PW variable obtained with the optimal profile
and the polynomial model from Emardson for all the campaign.
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Figure 5.11: Comparison of PW values derived with the polynomial model from
Emardson against the optimal PW estimates for all the campaign. The dashed line

shows the results of perfect correlation.
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Chapter 6

Variational assimilation of

GPS-derived observations:
4D-VAR

In this chapter we analyze the impact of the four-dimensional variational assimilation
of GPS-derived observations on moisture and precipitation fields.
The assimilation of a large number of PW observations is analyzed in Section (6.1),

while the ZTD variable is assimilated in Section (6.2) in a smaller GPS network.

6.1 4D-VAR assimilation of simulated precipitable

water into a mesoscale model

In this section we examine the impact of PW assimilation into a mesoscale model on
moisture and precipitation fields.

We conduct an observing system simulation experiment (OSSE) to simulate a set
of PW measurements from a hypothetical network of GPS receivers over a selected
area. This idealized network consists of one receiver located at each grid point of the
domain chosen for the study. In addition, we consider that every GPS site operates
a precise barometer. Therefore, since ZTD and surface pressure are available at all
grid points, the precipitable water content of the atmosphere can be derived at all
GPS sites following the procedure described in Section (3).

The ground-based GPS observations are simulated by means of the MM5 meteo-
rological model every 30 min and for a period of 3 h. We have selected the 4D-VAR
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assimilation technique to investigate the impact of the assimilation in order to make
use of the large amount of (simulated) observational data in time.

This study will give us a measure of the impact of the gridded GPS-derived PW
assimilation into MM5 for a selected domain. Note that in our idealized network,
we have a large number of ground-based receivers. The experiment under study
will provide us some theoretical guidance on the impact of the GPS-derived data

assimilation.

6.1.1 Simulation of the PW observations

We have used the MM5 mesoscale model to investigate the impact of the assimilation
of the PW variable, which is extensively described in Section (4.2). The version of
MMS5 used in this study includes a high-resolution Blackadar parameterization of
the planetary boundary layer (PBL) processes, the USGS topography and land-use
sources of 10 min, a non-explicit treatment for the moisture content, and explicitly
solves the clouds.

The retrieval experiment makes use of the MM5 Adjoint Model (Zou et al. 1995;
Zou et al. 1997). The adjoint model of MM5 is a tool which effectively computes
the gradient of any MM5 forecast aspect with respect to the model input control
variables. In this work under study, the control variables are the wind field (u, v, w),
the temperature (7'), the specific humidity (¢) and the perturbation pressure (i.e. the
difference between the actual and the reference pressure) (p').

The domain selected for the assimilation study is the north-east of the Iberian
Peninsula (see Figure 6.1). The grid distance of the domain is 18 km and the di-
mensions are 27 x 32 x 15, i.e. 27 grid points in the north-south direction, 32 in the
east-wet direction, and 15 vertical sigma layers. These layers are defined at o = 1.0,
0.96, 0.93, 0.89, 0.85, 0.80, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.0.

We have chosen a 3-h period from day 14 September 1999 to carry out this sen-
sitivity analysis. As it was seen in Section (4.2), this period was characterized by
large amount of precipitation in the area under study. The initial conditions are pro-
vided by the ECMWF analysis. The lateral boundary condition is obtained from the
analysis.

The PW variable is estimated at 30-min interval from 18 UTC 14 September
1999 to 21 UTC 14 September 1999 by means of the MM5 modeling system. The
precipitable water content is obtained from the vertical integration of the specific

humidity
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* KP

PW = %zqu(k) - Ao(k) (6.1)

where p* is defined as (ps — p;), ps is the surface pressure and p; is the pressure at the
top of the model. The ¢(k) variable is the specific humidity at the k-th layer, Ao (k)
is the thickness of the k-th layer, and K P is the total number of layers.

The analyzed PW values at the beginning of the experiment are depicted in Figure
(6.2a). Large PW values are observed over all the domain up to around 40 mm along
the coast. Values of precipitable water analyzed with MM5 at particular sites during
this stormy period are described in Section (4.2).

Figure (6.2b) shows the PW predicted by means of MM5 at the end of the sim-
ulation window. There is an important advection of moisture over the coast at the
ending time, basically along the northern and southern coastal areas.

The 3-h accumulated precipitation predicted by the MM5 model for this interval
time is represented in Figure (6.3). Rainfall amounts about a few millimeters (with
a maximum value of around 7 mm) are found in the northern part of the domain.

The simulation run described above (hereafter, the control run) is used to generate
the “observations” of PW from 18 UTC 14 September 1999 to 21 UTC September
1999. Three different cases are considered:

1. The PW values obtained from the control run are increased by 10 %. We thus
consider that the ground-based receivers measure higher moisture content than
the value predicted by MMb5.

2. The PW variable from the control run is reduced by 25 % and therefore the
GPS network gives lower humidity values than the meteorological model.

3. For one selected area, we modify its PW content. For this purpose, we divide
the domain along the east-west direction into two regions and then we replace
the moisture content of the southern sub-domain by the PW values measured
in the north of the domain. The PW variable is not modified for the northern

sub-domain.

We simulate three different observational data sets in order to carry out a sen-
sitivity analysis of the impact of the assimilation of the PW variable. We modify
the moisture content of the atmosphere from the control run by slightly increasing or
reducing its predicted value over all the domain in experiments (1) and (2) and we
modify the spatial distribution of the humidity variable in experiment (3).
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6.1.2 4D-VAR and statistical issues

The value of the cost function described in (2.18) consists of the background and the
observational terms. The latter requires the calculation of the adjoint of the obser-
vation operator and the covariance matrix of the observations that will be ingested

into the model. In our case, the observational term can be written as follows:

n

Jo(%) = ;(yt — PWelxi])" By (v — PWalxi]) (6.2)

where y; are the PW observations available at time ¢ and PW; is the forward operator
which calculates the precipitable water from the model variables at all grid points at
time ¢t. The accuracy of the simulated GPS observations of precipitable water is given
at the millimeter level which is a realistic assumption (see Sections 3 and 4.1). The
observations are assumed uncorrelated.

The a prior: information of the atmosphere is introduced in the first term of
(2.18). The background state of the atmosphere and its statistics is crucial to ensure
successful data assimilation, especially when sufficient observations are not available.
From a theoretical point of view, this a priori information is not needed if the number
of observations is larger than the degrees of freedom of the control variables.

A proper background term (.J) for the MM5 model is not yet available since the
adjoint model does not have the necessary error statistics. However, we can use some
approximations to obtain a simple background information. We use the ECMWF
analysis as initial condition (background) and the B~! matrix written in (2.18) is
a diagonal matrix obtained by taking the inverse of the square of the maximum
difference of the model variables between the beginning and the ending time of the
assimilation window (see Navon et al. 1992). This approximation is justified because,
in the 4D-VAR approach, the information on model variables is spread from one grid
point to another one by the covariance matrix and the strong constraint (2.25). This
is not the case for the 3D-VAR procedure, where the B~! matrix is the only available
source for propagating the information over the domain and thus a more accurate
covariance matrix should be used. The error associated to the PW variable using this
covariance matrix is around 3 mm of precipitable water.

The method used to minimize the cost function is the limited-memory quasi-
Newton method (Liu and Nocedal 1989) and the first guess conditions for the mini-
mization procedure are given by the initial model conditions.

For all experiments, the assimilation of the PW observations is carried in the same
domain as in the control run, and at all grid points. The observations are ingested
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into the model from 18 UTC 14 September 1999 to 21 UTC 14 September 1999
every 30-min. This is a realistic assumption since GPS-derived data are given at even
shorter intervals.

The PW field is the only variable that is assimilated into the model because we
are only interested in the impact of the GPS-derived precipitable water and not in
the assimilation of other model variables (such as wind and temperature) which are
not derived from ground-based GPS data.

6.1.3 Results and conclusions

We focus on the integrated water vapor and the short-range forecast of precipitation
in order to investigate if the assimilation of a large number of PW observations,
generated at this hypothetical GPS network, drives the forecast of the MM5 model
towards an important modification of the meteorological variables. The former is
the variable that is assimilated into the mesoscale model and the latter is a useful
field to examine because it is not assimilated and its accuracy is sensitive to various
dynamical and thermodynamical processes of the model.

The gradient of the cost function is obtained by integrating the adjoint model from
the final to the initial time of the assimilation window. The minimization procedure
gives the optimal state of the atmosphere at 18 UTC 14 September 1999 (see Section
2.2). The number of allowed iterations is 30 for all the experiments analyzed in this

section.

Experiment 1: assimilation of higher moisture content

Figure (6.4) shows the cost function value (J) and the norm of its gradient (V.J)
as a function of the iteration level. The cost function decreases to around 20 % of its
original value and the norm of the gradient decreases one order of magnitude during
the minimization procedure.

The PW field derived from the optimal state is shown in Figure (6.5) for the
initial time. As expected, we find an overall increase of the precipitable water with
respect the initial guess PW (Figure 6.2a) when high values of precipitable water are
assimilated into the model. The correlation coefficient between the optimal PW and
the control value of precipitable water is 0.99 and the rms value is 0.06 cm of PW. The
average increase of the moisture content of the atmosphere due to the assimilation of
the precise observations is 0.31 cm of PW.
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The minimum, maximum and average values of the increment of the precipitable
water obtained after the assimilation procedure with respect to the initial guess of
PW are 108 %, 111 %, and 109 %, respectively. This means that, in average, the
4D-VAR assimilation increases the moisture content of the atmosphere by the same
factor used to generate the observations of PW. This is caused by the assimilation
of observations of PW which are assumed to be very precise and forces the model to
reproduce them.

The increase of the PW field at all grid points after the minimization procedure
is due to the large number of GPS receivers available in the domain (one per grid
point!). We expect less impact on the PW field for a smaller GPS network. Studies on
the impact in the PW fields using a reduced number of ground-based GPS receivers is
analyzed in the following section in terms of the ZTD variable. The error associated
to the the optimal precipitable water value for this case under study is around 1
mm of PW. As expected, the variational assimilation increases the accuracy of the
meteorological fields.

The assimilation of higher values of PW also produces an increase of the relative
humidity field.

Figure (6.6) shows the moisture content at 1000 hPa from (a) the control run and
(b) the optimal run (i.e. the model simulation with the optimal initial conditions) at
18 UTC 14 September 1999. Prior to data assimilation, the relative humidity variable
varies between 60 % and 90 % in the most part of the domain. However, when the
GPS-derived observations are assimilated into the model, there is an increase of this
variable to above 90 %.

The increment of moisture fields after the assimilation procedure is also observed
at upper levels. Figure (6.7a) displays the relative humidity at 850 hPa pressure
level from the optimal run at 18 UTC 14 September 1999. At 850 hPa, the relative
humidity field is above 80 % over all the domain. This variable is slightly reduced
when it is compared with the results obtained from the control run. The relative
humidity field at the same pressure level and for the same time from the control
simulation is shown in Figure (6.7b). From the figure, the moisture field varies from
70 % to slightly above 90 % at 850 hPa.

We next examine the impact of these PW simulations on precipitation forecast,
the second field tested in our study. In order to investigate how this predicted field is
modified after the minimization procedure, we carry out a 3-h forward run starting

from the optimal initial conditions.
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Figure (6.8) shows the 3-h accumulated precipitation ending at 21 UTC 14 Septem-
ber 1999. The pattern is now completely different from the one obtained with the
first guess initial conditions. The assimilation of the high PW values simulated at the
GPS sites results in an overall increase of rainfall. When compared to the short-range
forecast of precipitation from the control run (Figure 6.3), weak and moderate rains
are collected over the whole area after the assimilation of the higher PW values. The
correlation coefficient between Figures (6.3) and (6.8) is 0.49 with a rms value of 1.2
mm of rainfall.

For the selected area and under the meteorological conditions of 14 September
1999, the assimilation of high PW observations at the hypothetical GPS network
results in an increase of the moisture content of the atmosphere and intensifies the
3-h accumulated precipitation over the whole area.

Experiment 2: assimilation of lower moisture content

We next investigate the impact of the assimilation of lower PW values into the
mesoscale model. The evolution of the cost function and the norm of its gradient are
shown in Figure (6.9) as a function of the iteration number. The function J reaches
its minimum after the first ten iterations and decreases to around 20 % of its original
value. The gradient of the cost function decreases two orders of magnitude during
the minimization procedure.

The assimilation of low GPS-derived observations of PW gives a lower moisture
content of the atmosphere. Figure (6.10) shows the PW field from the optimal state
of the atmosphere for experiment (2) at initial time. There is a general reduction
of the modeled PW variable once the observations are assimilated. The correlation
coefficient between this pattern and the control PW field is 0.99 and the rms value
is 0.16 cm of PW. The average difference between the precipitable water from the
initial conditions and the value obtained from the optimal condition is 0.7 cm of PW,
which converts to around 5 cm of ZTD.

The ratio between the optimal PW and the value obtained from the initial guess
varies between 0.70 and 0.84 with an average value of 0.78. As we found for experiment
(1), the model tends to reproduce the observed PW values once they are correctly
assimilated into the model.

The assimilation of lower PW values also modifies the short-range forecast of
precipitation. Figure (6.11) displays the 3-h accumulated rainfall ending at 21 UTC
14 September 1999 from the optimal conditions. The model predicts now a different
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distribution of precipitation when comparing with the results from the control run
(Figure 6.3). There is a reduction of the accumulated rainfall on the north coast
of Catalonia and in the western part of the Pyrenees. The maximum precipitation
peak covers now a major area and shifts slightly to the east. In addition, several
precipitation areas develop along the center of the domain. The correlation coefficient
between Figures (6.3) and (6.11) is 0.60 with a rms value of 0.8 mm of rainfall.

The assimilation of lower moisture content does not result in a reduction of the
forecast of precipitation. This should not come a surprise since the equations that
drive the evolution of the atmosphere are non-linear and consequently the prediction
of rainfall does not depend on the integrated moisture content only (see, e.g., Abbs
1999).

Experiment 3:

We now analyze the impact of the assimilation of the observations generated
in experiment (3). To generate these observations, the spatial distribution of the
precipitable water is modified by replacing the PW variable of the southern domain by
the PW moisture content of the northern region. We do not perturb the precipitable
water modeled for the northern part of the area under study.

The cost function and the norm of its gradient are displayed in Figure (6.12) as
a function of the iteration number. The value of J decreases to around 11 % of its
original value after the assimilation of the observations. The norm of its gradient is
reduced by two orders of magnitude during the minimization procedure.

Figure (6.13) shows the precipitable water field from the optimal run at 18 UTC 14
September 1999. As we have found for experiments (1) and (2), the assimilation of the
precise observations forces the model to reproduce the observed moisture field. From
the figure, if we divide the domain along the east-west direction, the southern region
reproduces the PW observations (i.e. northern part of Figure 6.2a) and, consequently,
both sub-domains obtained from the optimal run have the same spatial distribution
of the PW wvariable. The correlation coefficient between the control and optimal
precipitable water fields is 0.81 with a rms value of 0.48 cm of PW. The average
difference between both data sets its 0.29 cm of PW (values from the control run
higher).

The reduction of PW in the south of Catalonia and the lower elevation of this
area when comparing with the Pyrenees, result in a drastic reduction of the relative
humidity field in that region. This is shown in Figure (6.14) where we display the
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relative humidity variable at 850 hPa pressure level from the optimal initial conditions.
The main characteristic of this pattern when comparing with Figure (6.13) is that
although the PW content is the same for both sub-domains, the relative humidity is
higher for the north of Catalonia because of the higher elevation of the terrain, which
forces the model to allocate the same water vapor content in a thiner atmospheric
layer. Similar results are found at upper pressure levels (not shown).

Another effect of this assimilation experiment, is found in the direction of the
wind field. Prior to the assimilation, the wind is from the SE, advecting warm and
humid air towards the coast of Catalonia as is shown in Figure (6.15) at 850 hPa
pressure level. This produces indeed the high moisture content of the atmosphere for
the period under study.

The assimilation of lower PW values in the southern domain modifies the wind
direction in this area in order to decrease its moisture content. This is shown in
Figure (6.14) where we display the winds at 850 hPa for 18 UTC 14 September 1999.
From the figure, the winds on the southern coast of the domain turn to the southwest
after the assimilation with higher speeds than the control ones. As a result of the
assimilation procedure, the model modifies the winds accordingly to the observed
amount of precipitable water measured at the virtual GPS network. Since there is
a large area with lower observed moisture content than the nearby, the assimilation
generates a divergence of water vapor to reproduce the observations of PW in that
region.

We now examine the forecasted precipitation between 18 UTC and 21 UTC 14
September 1999. Figure (6.16) shows the 3-h accumulated rainfall from the optimal
run for experiment (3). Rainfall of different amounts are now collected at several
areas in both sub-domains. The correlation coefficient between Figure (6.16) and the
rainfall field prior to data assimilation is 0.62 with a rms value of 0.9 mm of rainfall.

The new precipitation areas developed with the assimilation of the observations
are coherent with the modifications found for the wind direction. The amount of water
vapor expelled from the southwestern area in Figure (6.14) increases the precipitation
recorded in its mountainous neighborhood.

We have shown that the moisture field and the short-range forecast of precipitation

are sensitive to the 4D-VAR assimilation of PW observations which are assumed very
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precise. Although there is not a linear dependence between PW and precipitation,
the amount of rainfall and its distribution in the atmosphere are very sensitive to this
variable (PW). This suggests the assimilation of precipitable water into mesoscale
models when GPS-derived observations are available. The results found in this section
give us confidence on the positive impact of the GPS estimates once they are correctly
assimilated. However, in our study we have used a large number of simulated GPS
receivers which is not the actual situation in the north-east of the Iberian Peninsula.
The results that we present are obtained from an idealized situation. In addition, we
have assumed that each GPS site was provided with a well calibrated barometer. At
present, in most GPS networks measurements of the surface pressure are not available.
All these reasons motivated us to investigate the impact of the ZTD assimilation
(instead of PW) measured in a reduced (and more realistic) GPS network over the

same domain. This is analyzed in the following section.
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10—min TOPOGRAPHY OF THE DOMAIN 18 UTC 14 Sep 1999 + 0.0000

Terrain Height (m) sm= 5

|1}
PV L

CONTOURS: UNITS=m LOW= 0.0000 HIGH= 1600.0 INTERVAL=  100.00
Model info: V2 Anthes—Kuo Blackadar Stable 18 km, 15 levels, 60 sec

Figure 6.1: 10-min resolution topography of the domain.
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MM5 CONTROL RUN 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1

\ \ I B —
a) 20.00 25.00 30.00 35.00 40.00 45.00 mm
MM5 CONTROL RUN 18 UTC 14 Sep 1999 +  3.0000

Precipitable water sm= 1

\ \ [ [T
b) 20.00 25.00 30.00 35.00 40.00 45.00 mm

Figure 6.2: Precipitable water fields for 14 September 1999 at (a) starting time and

(b) ending time of the simulation window.
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MM5 CONTROL RUN 18 UTC 14 Sep 1999 + 3.0000

3—hour Total Precip

Figure 6.3: 3-hour accumulated precipitation from the control run ending at 21 UTC
14 September 1999.

104



EN
Q
N

5.0x10

4.0x10%

3.0x10*

cost function

2.0x10%

1.0x10%

I I I I
2 4 6 8
number of iterations

b)

© [T T T I T I I T T T T T

1000

800

600

400

norm of the gradient

200

0 L L I I
4 6 8
number of iterations

o
N
o

Figure 6.4: Values of (a) the cost function and (b) the norm of its gradient for

experiment (1) as a function of the iteration number.
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MM5 FORECAST WITH ASSIMILATION: EXP 1 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1

[ [
20.00 25.00 30.00 35.00 40.00 45.00 mm

Figure 6.5: Precipitable water field from the optimal run at 18 UTC 14 September
1999 for experiment (1).
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MM5 CONTROL RUN 18 UTC 14 Sep 1999 + 0.0000

Relative Humidity at pressure = 1000 hPa sm= 1

\ \ [
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MMS FORECAST WITH ASSIMILATION: EXP 1 18 UTC 14 Sep 1989 + 0.0000
Relative Humidity at pressure = 1000 hPa sm= 1

I \ — |
b) 60.00 70.00 80.00 90.00 7%

Figure 6.6: Relative humidity at 1000 hPa from (a) the control and (b) optimal runs
at 18 UTC 14 September 1999. The results are for experiment (1).
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MM5 CONTROL RUN 18 UTC 14 Sep 1999 + 0.0000

Relative Humidity at pressure = 850 hPa sm= 1
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MMS FORECAST WITH ASSIMILATION: EXP 1 18 UTC 14 Sep 1999 + 0.0000
Relative Humidity at pressure = 850 hPa sm= 1
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b) 60.00 70.00 80.00 90.00 7%

Figure 6.7: Relative humidity at 850 hPa from (a) the control and (b) the optimal
runs at 18 UTC 14 September 1999. The results are for experiment (1).
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MM5 FORECAST WITH ASSIMILATION: EXP 1 18 UTC 14 Sep 1999 + 3.0000

3—hour Total Precip

Figure 6.8: 3-hour accumulated precipitation from the optimal run ending at 21 UTC

14 September 1999. The results are for experiment (1).
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Figure 6.9: Values of (a) the cost function and (b) the norm of its gradient for

experiment (2) as a function of the iteration number.

110



MM5 FORECAST WITH ASSIMILATION: EXP 2 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1

20.00 25.00 30.00 35.00 40.00 45.00 mm

Figure 6.10: Precipitable water field from the optimal run at 18 UTC 14 September
1999 for experiment (2).

MM5 FORECAST WITH ASSIMILATION: EXP 2 18 UTC 14 Sep 1999 + 3.0000

3—hour Total Precip
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Figure 6.11: 3-hour accumulated precipitation from the optimal run ending at 21
UTC 14 September 1999. The results are for experiment (2).
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Figure 6.12: Values of (a) the cost function and (b) the norm of its gradient for

experiment (3) as a function of the iteration number.

112



MMS5 FORECAST WITH ASSIMILATION: EXP 3 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1

[ [
20.00 25.00 30.00 35.00 40.00 45.00 mm

Figure 6.13: Precipitable water field from the optimal run at 18 UTC 14 September
1999 for experiment (3).
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MM5 WITH ASSIMILATION: EXP 3 18 UTC 14 Sep 1999 + 0.0000

Relative Humidity at pressure = 850 hPa sm= 1
<uuu,vvv> Vectors at pressure = 850 hPa sm= 1
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\ [ —— |
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Figure 6.14: Relative humidity and wind at 850 hPa from the optimal run at 18 UTC
14 September 1999. The results are for experiment (3).

MM5 CONTROL RUN 18 UTC 14 Sep 1999 + 0.0000

<uuu,vvv> Vectors at pressure = 850 hPa sm= 1

Figure 6.15: Wind at 850 hPa from the control run at 18 UTC 14 September 1999.
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MM5 FORECAST WITH ASSIMILATION: EXP 3 18 UTC 14 Sep 1999 + 3.0000

3—hour Total Precip

Figure 6.16: 3-hour accumulated precipitation from the optimal run ending at 21
UTC 14 September 1999. The results are for experiment (3).
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6.2 4D-VAR assimilation of zenith total delay ob-

servations into a mesoscale model

We finally investigate the impact of the assimilation of GPS data gathered at five
ground-based receivers operated by the ICC in the Catalonian area. We use the
zenith total delay as the observation variable instead of the precipitable water field
because pressure measurements are not available in this GPS network.

The domain selected to carry out this assimilation experiment is the same region
as in the previous section and the location of the GPS stations on the area under study
is shown in Figure (4.15). The distance between the sites ranges from 100 to 350 km
and the maximum altitude difference between sites is around 2400 m. The complex
topography of the area suggests the use of a non-hydrostatic mesoscale model such
as MM5 to better resolve the orographic effects. We make use of the MM5 Adjoint
Model (see the previous section) to carry out this assimilation study.

This work analyzes the 6-h period from 18 UTC to 24 UTC 14 September 1999.
The assimilation of the ZTD values is a 3-h window experiment, starting at 18 UTC
14 September 1999.

6.2.1 Case description

We select the stormy episode of 14 September 1999 in this assimilation analysis to
explore the capability of the 4D-VAR procedure to improve the forecasted fields with
the use of GPS-derived data in a rainfall event.

The meteorological variable associated with the ZTD data, and weakly modeled
by NWP systems, is the precipitable water. As a consequence, we expect interesting
results with the 4D-VAR assimilation technique for periods characterized by large
amount of precipitation, which is strongly related to the moisture content of the
atmosphere.

Section (4.2) describes in detail the atmospheric conditions for 14 September 1999
in the domain under study. In this assimilation study, we concentrate on the second
half of the day because higher values of PW were found (see Figure 4.16 in Section
4.2) and we expect that the impact of the assimilation of GPS data on the moisture
content of the atmosphere will be higher.

The grid resolution of the domain selected for this retrieval experiment is the same
as defined in Section (6.1) for the assimilation of simulated PW values (i.e. 27 x 32
x 15).
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The forecast run is initialized at 18 UTC 14 September 1999. The initial and
lateral boundary conditions are provided by the ECMWEF and interpolated to the
domain under study. The model uses a high-resolution Blackadar parameterization
of the boundary layer, explicitly solves the clouds, and includes no explicit moisture
physics. This control run is a 6-h forecast run.

Figure (6.17) shows the precipitable water field prior to data assimilation at 18
and 21 UTC September 1999. Large amount of moisture is found over the domain,
with higher values along the coast and the Mediterranean sea.

The forecast of precipitation is depicted in Figure (6.18). The figure shows the
3-h accumulated precipitation ending at 21 and 24 UTC 14 September. The passage
of the frontal system produced rainfall over the Pyrenees from 18 to 21 UTC covering
ESCO, LLIV and CREU stations. This control run does not predict rainfall at BELL
and EBRE GPS sites. Later, areas of moderate precipitation cover the most part of
the domain from 21 to 24 UTC as is shown in Figure (6.18b).

The precipitation recorded at the GPS sites during the same period is found in
Table (6.1). Large values of rain are found for the first 3-h period at all GPS stations
except for CREU, which did not measure any precipitation. This situation is not
reproduced correctly by MM5 when we compare the observations from the table with
Figure (6.18). Forecasts prior to data assimilation overestimates the actual amount of
rainfall at CREU station and underestimates the observed accumulated precipitation
at BELL site from 18 to 21 UTC. For the second 3-h period the model tends to
overestimate the precipitation at most of the observational sites.

6.2.2 4D-VAR data assimilation of the ZTD variable

In this 4D-VAR exercise we minimize the cost function J defined in (2.18) that mea-
sures the misfit between the observations and their modeled values. This functional

introduces a priori state of the atmosphere,

Jo(x) = (x — xp) " B71(x — xp). (6.3)

The background state is provided by the ECMWF analysis and interpolated to the
domain under study. The inverse of the covariance matrix of this a priori information
(B7') is assumed diagonal. The inverse of the square of the maximum difference of
the model variables between the beginning and the ending time of the assimilation
window are the elements of this matrix. The error associated to the ZTD variable
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using this covariance matrix is around 2.4 cm of ZTD (or around 3 mm of precipitable
water).

The observational term of the cost function in (2.18) is written now as follows:

n

Jo(x) = zoj(yt — ZTDy[x¢))T R, H(y: — ZTDy[x4]) (6.4)

where y, are the observations of the ZTD variable measured at the five ground-based
receivers at time t. The ZTD, value is the forward operator which estimates the
zenith total delay from the model variables (x;) at the location of the GPS sites at
t. This operator can be written as the sum of two terms: the ZHD and the ZWD

forward operators:

ZTD,[x] = ZHD,[x,] + ZWDy[x,] (6.5)

As it was seen in Section (3) the hydrostatic contribution can be estimated from
surface pressure measurements. Therefore, the ZHD operator in (6.5) basically esti-
mates the surface pressure at the GPS sites from the model variables. We use the
bilinear interpolation in the horizontal direction to interpolate the ground pressure
values from the grid points of the domain to the location of the GPS sites.

A more accurate treatment is needed for the interpolation in the vertical. We
use the methodology developed by the de Pondeca and Zou (2001) to interpolate the
model surface pressure to the elevation of the GPS sites. We thus consider three

different cases:

e station elevation higher than the model topography: the surface pressure of the
GPS site is found from the two sigma levels above and below the station. The
interpolation assumes an exponential dependence for pressure as a function of
height.

e station elevation lower than the model topography: the ground pressure at
the GPS site is interpolated from the sea level pressure and the model ground

pressure.

e station elevation coincides with the model topography: the surface pressure at
the ground-based receiver is provided by the model pressure.

De Pondeca and Zou (2001) found that this method used to interpolate the surface

pressure from the model to the observational sites yields average errors of the order
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of 1.0 to 1.5 hPa, which converts to around 3 mm of ZTD. However, these authors
obtained values as large as 3 hPa at some locations of the domain centered around
the Los Angeles Basin from 12 UTC 9 December 1996 to 24 UTC 9 December 1996.

We note the need for a carefully designed operator in the vertical direction if we
want to avoid a bias between the zenith total delay measured at the ground-based
receiver and the modeled ZTD value caused by orographic effects. This is because
the surface pressure strongly depends on the height of the GPS sites and these are
not modeled correctly as is shown in Table (6.2). The table shows the elevation of
the ground-based receivers and their modeled values by means of MM5. We find
differences as large as 500 m which corresponds to around 13 cm of ZHD. The bias
between the observations and the meteorological model has to be removed prior to
data assimilation in order to get the optimal state of the atmosphere.

The evaluation of the hydrostatic contribution in the zenith total delay operator
is computed from the ground pressure data using (3.6). The zenith wet delay value
at GPS sites is given by the temperature and water vapor pressure variables (see
equations 3.7 and 3.8 in Section 3).

Figure (6.19) shows the time series of the differences between the model and the
GPS zenith total delay prior to data assimilation. The mean-values of the differences
between the observations and the MM5 simulation of the ZTD are summarized in
Table (6.3) for all GPS sites. In most of the cases the observed values are higher than
the modeled results at ESCO and LLIV stations and we find the opposite situation
for CREU and EBRE sites. The atmospheric delay gathered at these sites is over-
estimated by the meteorological model. An error as large as around 3 cm of ZTD is
found for BELL station at the initial time of the period under study.

The R; ' matrix in (6.4) is the inverse of the covariance matrix associated to the
observations. The zenith total delay observations are assimilated every 15-min with a
precision that varies in time. The errors of the observations are assumed uncorrelated.

The ECMWEF analysis interpolated to the domain under study is taken as first
guess for this assimilation experiment.

The control variables for this case under study are the three components of the
wind field, the temperature, the pressure perturbation and the specific humidity at all
grid points. We expect a reduction of the ZTD differences between the MM5 model

and the observed values and thus improve the model initial conditions.
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6.2.3 Results and conclusions

The minimization procedure gives the optimal state of the atmosphere at the initial
time after the 35 allowed iterations.

The values of the cost function and the norm of its gradient are shown in Figure
(6.20) as a function of the iteration number.

The functional J decreases by around 90 % of its original value during the min-
imization procedure, with the largest drop occurring during the first 10 iterations.
At the beginning of the minimization, the cost function is entirely due to the ob-
servational term since the first guess condition coincides with the background state
of the atmosphere. The background contribution to J increases with the iteration
level, while the observational term decreases in order to minimize the cost function.
The norm of the gradient decreases one order of magnitude during the minimization
procedure.

The accuracy of the ZTD value obtained from the optimal state of the atmosphere
decreases from 2.4 cm (prior to data assimilation) to around 0.5 cm of ZTD after the
assimilation of the precise observations.

Figure (6.21) shows the ZTD differences between the GPS observations and the
values obtained from the optimal initial conditions. As expected, the assimilation of
the zenith total delay reduces the mean error of the model at all sites. The average
differences of ZTD between observations and MM5 are summarized in Table (6.3).
We find that EBRE, CREU and BELL reduce their absolute ZTD error by more than
90 % and LLIV and ESCO by above 70 %.

The reduction of the ZTD error can provide from a reduction of two different error

sources:

e error associated to the hydrostatic contribution

e error caused by the zenith wet delay term

Measurements of surface pressure at GPS sites are needed to evaluate the first
source of error in order to compare the observed pressure data with the values pre-
dicted by the meteorological model. The only ground-based receiver from our GPS
network that operates a barometer is CREU station. The time evolution of the sur-
face pressure at CREU is shown in Figure (6.22). The figure also includes the modeled
ground pressure from initial and optimal states of the atmosphere at the time when

Z'TD observations are available. The average bias between the observed pressure and
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the values obtained from the first guess initial state is around 1.6 hPa. This value is
in agreement with the pressure errors found by de Pondeca and Zou (2001) associated
with the estimation of the ground pressure.

The assimilation of GPS-derived ZTD data does not reduce this pressure error at
CREU. The difference between the a priori pressure at this site and the value obtained
after the assimilation procedure is basically not changed because of the accuracy of
the initial surface pressure which is given at around 0.7 hPa with the B! matrix
defined in (6.3). This error on the ground pressure error only accounts for 1.5 mm of
ZTD.

We find similar results for the modeled pressure at surface with and without
assimilation at all GPS stations. As a consequence, all the improvement achieved with
the assimilation of the zenith total delay is found in the zenith wet delay contribution,
i.e. the moisture content of the atmosphere.

In the following, we are going to analyze the impact of the ZTD assimilation in
terms of the atmospheric moisture. We select the precipitable water field and the
short-range forecast of precipitation to carry out such analysis.

Figure (6.23) shows the PW variable at 18 and 21 UTC 14 September 1999 from
the optimal state of the atmosphere after the 35 iterations allowed in the minimization
procedure. The figure reproduces the main features obtained from the control run
in Figure (6.17). The correlation coefficient between both plots at the beginning
and ending times of the assimilation window is 99 % (average rms value of 5 mm of
PW). However, some differences are found in very localized areas. The control run
overestimates the moisture content at CREU station at the end of the assimilation
window when compared to the optimal PW field. Similar tendencies are found around
EBRE and BELL sites. The mountain stations (ESCO and LLIV) located on the
Pyrenees do not modify their PW content after the assimilation of ZTD because the
largest part of the moisture content of the atmosphere is located below 3000 m and
these sites have elevations of around 1500-2000 m. We expect that the impact of the
assimilation of ZTD will be higher for lower GPS heights.

The decrease of the precipitable water field at CREU station with the assimilation
of GPS data reduces the forecast of rainfall at this site. This is shown in Figure (6.24a)
where we display the 3-h accumulated precipitation ending at 21 UTC 14 September
1999. Another characteristic of this pattern when it is compared with Figure (6.18)
is the increase of produced rainfall at the area covering BELL station.

When these results are compared with the observations at the GPS stations (see
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Table 6.1) we find that the optimal run reproduces more accurately the precipitation
measured at CREU, BELL, and LLIV sites than the optimal run. However, the
model does not predict the intense peaks of rain measured at BELL and ESCO
sites. We expect better results on the prediction of precipitation when other variables
such as wind, temperature and surface humidity, which have direct influence on the
precipitation predictions, are also assimilated in a 4D-VAR procedure along with the
PW field.

We find less differences between the 3-h accumulated precipitation ending at 24
UTC when comparing the control and optimal runs. This is probably caused by
the “contamination” of the boundary condition which is not optimized by the 4D-
VAR assimilation technique. The main effect of the minimization for this second 3-h
window is found at EBRE site. The run from the optimal conditions reduces the
predicted amount of rainfall over this area, which agrees with the observational data
at this site.

In this section, we have analyzed the impact of the assimilation of ZTD at five
selected grid points. The results yield an important improvement of the short-range
precipitation forecast around the location of the GPS sites. This influence, in general,
will depend on the model resolution and on the area under study.

This study provides results for this particular case and under these meteorological
conditions. These are preliminary results on the impact of the ingestion of GPS data
into a mesoscale model.

The use of the MM5 Adjoint Model to get the optimal state of the atmosphere
requires different data sources. A schematic diagram of the procedure used in this
exercise is presented in Figure (6.25). We first need to select the area where to carry
out the assimilation study and get the topography and land-use data sets accord-
ingly to the selected grid size. We have used the 10-min resolution source. In this
mesoscale model, this is done in the TERRAIN package. Analysis given by ECMWF
are used to provide initial and boundary conditions for the domain under study in
the REGRID module. In case that multiple nesting is defined in our domain, we can
use the INTERP program to interpolate the initial conditions to the nested domains.
In addition, this program handles the data transformation (vertical and horizontal
interpolation, diagnostic computation and simple data reformatting).

At this point, we are ready to run the meteorological model (i.e. the MM5 pro-
gram) and to analyze the predicted fields. We have called this run the control run.

The availability of the GPS-derived data, gathered at the ICC and analyzed at the
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IEEC, every 15-min interval, allows us to use the 4D-VAR procedure to assimilate the
zenith total delay and get the optimal state of the atmosphere by using the adjoint
version of the MM5 meteorological model.

Once the optimal state of the atmosphere is achieved, we run again the MM5
program to analyze the improved meteorological predicted fields. Then, we compare
the state of the atmosphere obtained from the initial and optimal runs with the
available observations over the domain to analyze the impact of the assimilation of
the observations.
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Table 6.1: 3-hour accumulated precipitation (mm) ending at 21 and 24 UTC 14

September 1999 measured at the five GPS stations.

station | 18-21 UTC 14 September | 21-24 UTC 14 September
CREU 0.0 mm 0.0 mm

EBRE 1.2 mm 0.0 mm

BELL 8.7 mm 0.0 mm

LLIV 8.6 mm 5.6 mm

ESCO 7.0 mm 5.0 mm

Table 6.2: Altitude of the GPS stations and elevation from the 10-min topography

source. All the heights are in meters above sea level.

Table 6.3: Average bias between GPS-derived ZTD and MM5 modeled values from

initial and optimal conditions for all the stations. All values are expressed in cm of

Z'TD.

station | model height | GPS elevation
CREU 0m 83 m
EBRE 204 m 58 m
BELL 624 m 803 m
ESCO 1971 m 2458 m
LLIV 1823 m 1418 m

station | Initial Conditions | Optimal Conditions
BELL 1.19 cm 0.01 cm
CREU -1.93 cm -0.04 cm
EBRE -2.17 cm -0.08 cm
ESCO 0.74 cm 0.21 cm

LLIV 2.06 cm 0.34 cm
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MM5 FORECAST WITHOUT ASSIMILATION 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1

\ \ I B
a) 20.00 25.00 30.00 35.00 40.00 45.00 mm
MM5 FORECAST WITHOUT ASSIMILATION 18 UTC 14 Sep 1999 + 3.0000
Precipitable water sm= 1

\ \ [ [T
b) 20.00 25.00 30.00 35.00 40.00 45.00 mm

Figure 6.17: Precipitable water fields for 14 September 1999 at (a) 18 UTC and (b)
21 UTC from the control run.
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MM5 FORECAST WITHOUT ASSIMILATION 18 UTC 14 Sep 1999 + 3.0000

3—hour Total Precip

a) .10 .20 40 .80 1.60 3.20 6.40 mm

MM5 FORECAST WITHOUT ASSIMILATION 18 UTC 14 Sep 1999 + 6.0000

3—hour Total Precip

[ [ [ | B —
b) .100 .200 400 .800 1.600 3.200 6.400 mm

Figure 6.18: 3-hour accumulated precipitation from the control run ending at (a) 21
UTC and (b) 24 UTC 14 September 1999.
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Figure 6.19: Evolution of the ZTD differences prior to data assimilation between the
GPS observations and the MM5 modeled values as a function of time for all GPS

sites.
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Figure 6.21: Evolution of the ZTD differences from optimal conditions between the
GPS observations and the MM5 modeled values as a function of time for all GPS

sites.
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Figure 6.22: Surface pressure at CREU station as a function of time from the observed
values (continuous line) and the pressure variable simulated with the model from the
initial conditions (*), and from the optimal state of the atmosphere (o).
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MM5 FORECAST WITH ASSIMILATION 18 UTC 14 Sep 1999 + 0.0000

Precipitable water sm= 1
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Figure 6.23: Precipitable water fields for 14 September 1999 at (a) 18 UTC and (b)
21 UTC from the optimal initial conditions.
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Figure 6.24: 3-hour accumulated precipitation from the optimal run ending at (a) 21

UTC and (b) 24 UTC 14 September 1999.
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Figure 6.25: Flow chart of the sources and programs used in the 4D-VAR assimilation
of the GPS-derived observations.
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Chapter 7
Conclusions

The measurement and modeling of water vapor field is still associated with large
uncertainties and is one of major error sources in short term forecast of precipitation.
New observing systems have been available during the last years. Some of them
can be used to derive the moisture content of the atmosphere and thus improve the
short-range forecasts of rainfall. This has been the case of the GPS system.

In this thesis we have made use of this new instrumental technique to monitor
meteorological models and to justify its assimilation in NWP models.

The most suitable meteorological application of this satellite technique is per-
haps the assimilation of the GPS estimates into NWP models in a variational way.
However, as a first step and previous to the assimilation, we have determined how
GPS-derived observations compare with the values estimated by means of NWP mod-
els.

We have investigated the comparison between the GPS-derived observations and
the values analyzed and forecasted with three mesoscale numerical models and under
different meteorological situations. GPS data has been converted to atmospheric
delays mapped to the zenith direction or to a more meteorological variable, such as
precipitable water, depending on the availability of surface pressure measurements.
The good agreement found among all the methods tested in this thesis (GPS, NWP
models, and radiosondes) is very encouraging for the possible use of GPS atmospheric
products in NWP. The availability of such measurements would potentially be useful
for studying the distribution of the water vapor variability on small spatial scales. We
have shown that GPS measurements can detect small (temporal) scale fluctuations
and therefore can be used to evaluate meteorological models with fine resolution.

We have then explored the capability of the 4-dim variational assimilation tech-
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nique to evaluate the impact of the GPS-derived observations in NWP models. This
data assimilation method takes into account the high rate of the GPS data retrievals.

A global impact on humidity and precipitation fields is found when a large number
of GPS-derived observations of PW are assimilated into the model. We have shown
that the moisture field and the short-range forecast of precipitation are sensitive
to the 4D-VAR assimilation of PW observations which are assumed very precise.
Although there is not a linear dependence between PW and precipitation, the amount
of rainfall and its distribution in the atmosphere are very sensitive to this variable
(PW). The impact of the assimilation of the GPS data decreases for a smaller number
of observations.

We have also analyzed the influence of the assimilation of the atmospheric delay
instead of the precipitable water in a small GPS network. The largest impact of
the assimilation of the GPS observations is found for the moisture component of the
atmosphere. The results yielded an important improvement of the moisture field and
precipitation forecast around the location of the GPS sites. This encourages the use
of dense GPS networks. In general, this influence will depend on the topography and
model resolutions, and on the area and the meteorological situation under study.

This thesis provides preliminary results on the impact of the GPS data into NWP
models for selected areas and under particular meteorological situations. Some of the
results have been published in international papers and others are in the process to
be published. These are, at least, the results of the efforts from the last years.

There are many issues regarding this subject that should be further analyzed in
the future. For example, it is necessary to develop and implement better covariance
matrices of NWP models, and is still missing an observational covariance matrix for
spatial correlations between GPS observations. The use of GPS-derived observations
into meteorological models in an operational environment also requires the availability
of the GPS data in near real time and the implementation of a good quality control
check. All these topics should be investigated before the system could be operational

in the weather services.
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Appendix

Atmospheric delays from radiosonde profiles and

propagation of statistical errors.

To estimate the zenith hydrostatic and wet delays from radiosonde profiles in Section
(4.1) we used as input variables the geopotential height, the pressure, the temperature
and the dew point temperature values at each sounding level.

Vapor pressure profiles were calculated from the dew point temperature using the

Clausius-Clapeyron equation,

dP:%  LP:M,,

wet
= 7.1
ar RT? (7.1)
where P59 is the saturated vapor pressure, M,, is the molecular weight of the water

vapor, R is the universal gas constant and L is the latent heat. The vapor pressure
of the atmosphere was obtained by using the dew point temperature instead of the
atmospheric temperature in the expression above. The approximation used for (7.1) in
the exercise described in Section (4.1) lets a latent heat which varies with temperature.

The dry pressure was then calculated by subtracting the vapor pressure the total
pressure. The estimates of the ZWD and ZHD atmospheric delays, as well as their
propagated errors, where calculated by integrating the refractivity profiles.

The errors associated to the radiosonde atmospheric delays where obtained from
the propagation of the statistical errors associated to the variables involved in the
ZWD and ZHD calculations. These errors were calculated as follows:

Let E be a function which depends on parameters v;. The propagation of the

errors associated with v; to the function E is given by

(g—E)Z : (5vz~)2] (7.2)

Uy

(bE)? = %
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In our case, the function E' is given by

E = (10 %%;N(2) - Az (7.3)

where N is the neutral (wet or hydrostatic) atmospheric refractivity. The variables
that contribute to the total error are the dry pressure, the water pressure, the tem-
perature, the refractivity constants and the height increments. The errors associated
with these variables were provided by Vaisala. We did not assume any error for
the compressibility terms in (3.3) because they differ from unity by a few parts per
thousand.

The error associated to the ZTD variable varied from 10 to 13 mm. The estimates
of ZWD and ZHD values at the IGNE station are shown in the following table for all

the campaign:
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day | ZWDg | ZHDg | ZTDg | 0(ZWDs) | o(ZHDs) | ¢(ZTDg) | ZTDgps) | AZTD
(mm) | (mm) | (mm) | (mm) (mm) (mm) (mm) (mm)

2.5 |71 2146 | 2217 |9 9 13 2225 8
3.0 |72 2140 | 2213 |6 9 10 2216 3
3.5 |58 2126 |2184 |3 9 10 2200 _16
40 |79 2112 |2192 |4 9 10 2193 -1
45 |98 2103 | 2202 |4 8 9 2202 0
50 |91 2098 | 2189 |5 7 9 2190 1
55 |69 2099 | 2168 |2 8 8 2160 8
6.0 |47 2103 | 2151 |1 9 9 2154 -3
75 |48 2115 | 2163 |2 8 9 2180 17
8.0 |77 2123 | 2200 |3 9 9 2200 0
8.5 |80 2118 | 2199 |4 8 9 2205 6
9. |58 2120 | 2178 |4 8 9 2193 15
9.5 |68 2115 | 2183 |2 9 9 2194 11
10. | 62 2117 | 2180 |3 9 9 2186 -6
11.5 (109 | 2102 | 2211 |6 9 11 92242 -31
12. [103 | 2110 | 2213 |5 8 10 2227 “14
125 [ 127 | 2133 | 2261 |6 9 11 2229 32
13. [130 | 2111 |2241 |7 8 10 92262 21
13.5 | 98 2107 | 2205 |4 9 10 2205 0
14. |81 2099 | 2180 |4 9 10 2203 23
14.5 | 84 2107 |2191 |4 8 9 2209 18
15.0 | 79 2118 | 2197 |5 8 10 2197 0
15.5 | 52 2119 | 2171 |3 9 9 2165 6
16.0 | 63 2124 | 2187 |2 10 10 2162 25

In the table, ZTDg and ZTDgpg account for the radiosonde and GPS atmospheric
delays, respectively, and AZTD is the difference between them. The x? value for this

data set is given by

, 1 AZTD?

=Y =" =1 .
=Nl e =T (74)

In the expression above, og is the ¢ associated to the radiosonde calculations of ZTD.
We chose a mean value of 5 mm for the o of the GPS-derived ZTD. From the y? value
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obtained in the equation above, we should increment the error associated to the GPS
observations in a 1.3 factor (or a 30 % of its value) to get x*>=1.
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