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ABSTRACT

A nonlinear forecasting method based on the reconstruction of a chaotic strange attractor from about 1.5 years
of cloud absorption data obtained from half-hourly Meteosat infrared images was used to predict the behavior
of the time series 24 h in advance. The forecast values are then used by a meteorological model for daily
prediction of plume transport from the As Pontes 1400-MW power plant in northwestern Spain. Results from
the meteorological model, using the cloud absorption predictions, are compared with measurements obtained
from meteorological towers and a Remtech PA-3 sodar. The effects of cloud absorption on SO2 ground-level
concentration forecasts are analyzed for two different days.

1. Introduction

The accuracy of earth radiation budget estimates de-
rived from satellite-based measurements is highly de-
pendent on how well cloud variability is taken into ac-
count. Because of its dynamic nature and pronounced
optical characteristics, cloud cover is one of the most
important variables affecting the radiation balance,
which, for example, is the determinant for dispersion
modeling of pollutants and, ultimately, the global cli-
mate, among other effects. Different measurements and
methods have been undertaken in the last decades (Von-
der Haar et al. 1981; Minnis and Harrison 1984; Li et
al. 1995) since the launch of the first weather satellite
(Arking 1964). On the other hand, it is well known that
diurnal and annual cycles of cloud cover occur in many
areas (Short and Wallace 1980), but the magnitude and
timing of these cloud oscillations and their radiative
properties are poorly known.

In this work, an air pollution system for 24-h fore-
casting of mesoscale plume transport is presented. The
system is based on a three-dimensional time-dependent
meso-b hydrostatic meteorological model and a La-
grangian adaptive plume model (Ludwig et al. 1989;
Souto et al. 1994; Souto et al. 1998). These models are
already being used, on a trial basis, at the As Pontes
power plant in the northwest of Spain. Because the
whole system was designed for running daily on a me-
dium-sized workstation, the meteorological prediction
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model has been developed for providing good mesoscale
meteorological forecasting with little CPU cost.

The area under consideration is characterized by steep
hills and sea inlets bathed by the Atlantic Ocean sur-
rounded by cliffs, consequently affecting the wind di-
rection. Figure 1 shows the topography of the area (61
km 3 61 km) whose central point is the As Pontes power
plant (here a continuous gaseous plume is exhausted at
356.5 m above ground level, 688.4 m above the sea
level). This area is between between 43899 and 438409N
and 78369 and 88129W. The top of the region is the Serra
do Xistral, 1036 m above sea level. Thus, the region
under consideration can be considered as an interme-
diate terrain. The region is mainly influenced by north-
eastern and southwestern winds that displace the power
plant plume from and to the region of interest. To predict
its behavior, the meteorological model should account
for cloud behavior and formation, which means to de-
scribe a larger region to take into account the displace-
ment of clouds. So, to avoid longer extensive calcula-
tions usually beyond the capabilities of an industry, a
forecasting model for cloud formation was developed
based on nonlinear chaotic predictions that are coupled
to the meteorological model describing wind and tem-
perature behaviors.

Here, we have tried to combine two different points
of view of analyzing meteorological data, namely, the
standard atmospheric circulation models and a new ap-
proach based on the analysis of time series data of phys-
ical observations, whose dynamics exhibit irregular or
chaotic behavior. In the former case, physical infor-
mation about weather and climate dynamics is obtained
by studying the ‘‘bulk’’ properties (averages, covari-
ances, etc.) of basic meteorological field variables. The
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FIG. 1. Topography of the area under study in northwestern Spain (Galicia). Oceanic areas (gray
zones) can be observed in the north and west of the figure. Meteorological towers are indicated
as squares, circles indicate the position of GLC stations, and the sodar (black triangle) is located
at the center of the figure in A Mourela. The As Pontes 1400-MW power plant is shown by an
‘‘3.’’

latter case, which may be called nonlinear time series
analysis, explores the possibility and the extent to which
the dynamics generating this time series is deterministic,
that is, occurs on a low-dimensional, chaotic attractor.
This analysis has already been applied to a variety of
large-scale physical problems, from Rayleigh–Bénard
convection (Malraison et al. 1983) to geostrophic tur-
bulence (Guckenheimer and Buzyna 1983); from sur-
face temperature (Bountis et al. 1993) to earthquake
dynamics (Pavlos et al. 1994); and from surface gravity
waves (Elgar and Mayer-Kress 1989) to weather and
climate dynamics (Fraedrich 1986; Nicolis and Nicolis
1984). In many cases, evidence of a low-dimensional
chaotic attractor has been observed, even if the time
series is not free of noise.

Here, we apply the techniques of nonlinear analysis
to a time series of semihourly cloud absorption values
obtained from infrared Meteosat images for 24-h fore-
casting. Later, the cloud absorption values are intro-
duced in a meteorological model for wind and temper-
ature forecasting in the region of interest and compared
with measurements from nine meteorological towers
and one Remtech PA-3 sodar. The role of cloud ab-
sorption determining ground-level SO2 concentrations

is analyzed for two different days in the summer and
winter of 1996.

2. Meteorological model

The dynamics of the atmospheric boundary layer de-
pends on complex interactions of various influences:
local topography, vegetation, clouds, radiation and
moisture flux, and other processes. During the last two
decades, many three-dimensional models have been for-
mulated to describe special mesoscale phenomena (Ya-
mada and Mellor 1975; Pielke 1984; Enger 1990; War-
ner and Seaman 1990; Enger et al. 1993; Stauffer et al.
1993; Weygandt and Seaman 1994).

a. Equations

The present dynamic model is a three-dimensional
time-dependent mesoscale model based on finite dif-
ference solutions of the hydrothermodynamic equations.
Only the hydrostatic part has been solved here (Souto
et al. 1994; Souto et al. 1996; Souto et al. 1998; Pérez-
Muñuzuri et al. 1996). A terrain-following coordinate
system is used to introduce the topography in the model
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(Pielke and Martin 1981). The new vertical coordinate
h is defined as

z 2 zg
h 5 s , (1)

s 2 zg

where zg is the terrain height. The maximum height s
is taken constant in this study and equal to 7000 m. The
basic equations of the model for the horizontal wind
components U, V; the potential temperature u; and the
specific humidity q3 can be written as

2DU s ] ]U ]u ]u ]p
5 K 2 u 2 y 2 um1 2 1 2Dt s 2 z ]h ]h ]x ]y ]xg

]zh 2 s g
1 g 2 f̂ W 1 f V, (2)1 2s ]x

2DV s ] ]V ]y ]y ]p
5 K 2 u 2 y 2 um1 2 1 2Dt s 2 z ]h ]h ]x ]y ]yg

]zh 2 s g
1 g 2 f U, (3)1 2s ]y

2Du s ] ]u ]w ]w
5 K 2 u 2 y 1 S , (4)h u1 2 1 2Dt s 2 z ]h ]h ]x ]yg

and

2Dq s ] ]q ]q9 ]q93 3 3 35 K 2 u 2 y , (5)q1 2 1 2Dt s 2 z ]h ]h ]x ]yg

denote the Coriolis parameters [ f 5 1.45ˆwhere f and f
3 1024 sin(f )s21, 5 1.45 3 1024 cos(f )s21, and ff̂
is the latitude at the area under consideration, which in
general will be a function of the position x, f (x)]. Fi-
nally, to complete the calculations of the wind field, the
vertical component of the wind velocity W is obtained
from the conservation of mass relationship.

The horizontal subgrid correlation terms in Eqs. (2)–
(5) (denoted by an upper bar) are supposed to be small
compared to the advection terms, and so some authors
exclude them from the calculations (Enger 1990). Oc-
casionally, these fluxes have been used as free param-
eters to minimize the discrepancies between the nu-
merical method and the experimental data (Pérez-Mu-
ñuzuri et al. 1995) or to control nonlinear aliasing by
choosing a parameterization depending on the horizon-
tal wind gradients modulated by some coefficient kD

arbitrarily adjusted until 2Dx wavelengths do not appear
to degrade the solutions significantly (Pielke 1984).
Here, Tag et al.’s (1979) parameterization for the eddy
formulation with kD 5 0.2 is followed.

The vertical turbulent fluxes correspond to those
terms with the exchange coefficients for momentum,
heat, and moisture, Km, Kh, and Kq in Eqs. (2)–(5). They
account for the vertical mixing at the atmosphere, and
their definitions depend on the stability of the layer be-
ing simulated. When the layer is stably stratified (such

as at night over land or on cloudy days with wet ground),
we use a parameterization based on the Richardson num-
ber suggested by Blackadar (1979). On the other hand,
when the atmospheric layer is unstably or neutrally strat-
ified (such as over land or sunny days) the exchange
coefficients are then defined as a function of the distance
above the ground, and O’Brien’s (1970) cubic poly-
nomial approximation is used. To apply this profile for-
mulation, the depth of the planetary boundary layer
(PBL) must be known.

The depth of the planetary boundary layer zi is usually
associated with an inversion, and it is calculated, during
the daytime, as suggested by Deardorff (1974) and Piel-
ke and Mahrer (1975), using a prognostic equation that
mainly depends on the surface heating (Pielke 1984).
With the use of the slab model, which considers the
entrainment layer infinitesimal, Deardorff has derived
the following equation for the growth of the convective
PBL, which includes the effects of the entrainment:

]z ]z ]zi i i5 2U 2 V 1 Wz z zi i i]t ]x ]y
3 3 21.80w 1 1.98u 2 5.94u f zi* * *1 , (6)

2zi 2 2gc 1 9w 1 7.2u* *us

where

 1/3g 2 u*u*z , if u* # 0i1 2 usw* 5 (7)
0 if u* . 0,

and us is the potential temperature at the top of the
surface layer, hs 5 0.04zi. In Eq. (6) the growth of zi

is directly proportional to the surface heat flux and me-
soscale vertical velocity and inversely proportional to
the overlying stability.

During the transition from convective to stable con-
ditions, zi tends to adjust exponentially toward an equi-
librium depth (Kondratyev 1969), with a response time
of 1/ f. The expression of Smeda (1979), who proposed
that the growth of the stable layer is proportional to the
stress induced by the wind near the surface has been
used,

0.3u*
eqz 5 . (8)i f

The height calculated by Eq. (8) during transition time
could be considered as a fictitious height during which
the stable layer near the surface develops and becomes
well established, so the model provides a value for the
PBL throughout the simulation period.

The similarity stability functions given by Businger
et al. (1971) are used to account for the turbulence pa-
rameters needed to solve these equations. Here, q*, u*,
and u* are obtained by applying the two-level method
proposed by Berkowicz and Prahm (1982). It consists
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of an iterative process that converges quickly. It uses
wind speed and potential temperature at two different
heights (in this case, 3 and 10 m) as inputs. For the
model presented here, this two-level method works bet-
ter than that using a least squares approach described
by San José (1991), which requires more accurate results
at the surface layer.

b. Numerical method

Equations (2)–(5) are solved by a finite difference
method. A forward-in-time, upstream-in-space scheme
is used for the advection terms. For the diffusion terms
(vertical turbulent fluxes), a semi-implicit scheme with
weight of 75% on a future time step is used and the
constant time step is 30 s. The rest of spatial derivatives
are solved by a forward-in-time, centered-in-space
scheme. For Coriolis terms, as well as for the radiation
terms, an explicit scheme has been used.

By using an upwind scheme for the advection terms,
nonlinear waves appear, disturbing the solution. Al-
though an eddy parameterization of the horizontal tur-
bulent fluxes has been used to minimize these effects,
two-dimensional filtering based on the averaging of U,
V, W, u, and q3 with the nearest neighbors with some
factor a (see Haltiner and Williams 1980) has also been
required.

Forty logarithmically spaced vertical levels between
3 m above the ground and the domain top at s 5 7000
m are used. A 31 3 31 horizontal grid with a grid mesh
of 2000 m is used.

Both the continuity and hydrostatic pressure equa-
tions are integrated by an explicit finite-difference
scheme in order to obtain the vertical component W of
the wind velocity and the scaled pressure p.

c. Initial and boundary conditions

Twenty-four-hour meso-a forecasts are provided dai-
ly by the Spanish National Meteorological Institute for
four points on a 100-km grid at four pressure levels.
The forecasts are used as initial data in our meteoro-
logical model, which provides meso-b forecasts of
three-dimensional wind, potential temperature, and spe-
cific humidity fields. To avoid the first spurious effects
from initialization, the model is run for 1 h without time-
dependent forcing terms.

Lateral boundary conditions for the spatial derivatives
at each level are inflow and gradient outflow for the
horizontal wind components and zero-flux boundary
conditions for pressure p, potential temperature, and
specific humidity. Surface temperature and specific hu-
midity are initialized from measurements obtained from
nine meteorological towers in the area of interest. An
initial constant profile for q3 is supposed until reaching
the PBL and from there on q3 linearly decreases to zero.
The depth of the planetary boundary layer zi initially,

at night, is supposed to be very small and here was set
to 100 m.

In the terrain-following coordinate system, zg is de-
fined as the sum of the terrain height, the zero displace-
ment, and the surface roughness length. Then, by def-
inition, the wind at h 5 0 is zero. The derivatives of
the horizontal wind components at the upper boundary
are set to zero (i.e., homogeneous geostrophic wind).
The vertical gradient of potential temperature and spe-
cific humidity at the model top are assumed constant.
The temperature at the ground is calculated by means
of a force–restore method described in the next section,
while specific humidity at the ground surface is cal-
culated by a method proposed by McCumber and Pielke
(1991), which mainly depends on the surface temper-
ature.

d. Surface temperature

1) EARTH–ATMOSPHERE HEAT BUDGET

The following equation, termed the force–restore
method by Deardorff (1978), was used to predict the
air–earth interface temperature TG:

1/2
]T 1 4pG 5 [(1 2 a )Q 1 Q 2 Q 2 Q 2 Q ]s S LD LU H E1 2]t r c k Ys s s

2p(T 2 T )G M2 . (9)
Y

The last term in Eq. (9) includes the effect of con-
duction from the ground below the interface. It avoids
the problem of having to compute temperatures at a
number of levels beneath the surface. Here, TM is cal-
culated as

]T 1M 5 (T 2 T ). (10)G M]t Y

The soil properties as, rs, cs, and ks depend on the
surface nature and sun position. Most typical values can
be found in the literature; five different soil types were
used for our simulations (Souto 1998).

The heat flux values QS, QLD, QLU, QH, and QE change
with solar elevation and have been calculated following
parameterizations described in Pielke (1984) and Stull
(1991). The solar radiative flux QS is computed from
the equation

QS 5 [1 2 j(t)](S 2 AS) cosZ, (11)

where j is the sum of the cloud-top albedo and in-cloud
absorption by cloud droplets; j can change with time.
Clouds are assumed to be in one layer at a height that
is the average height weighted by the amount of each
layer observed from the surface. Typical values of j
from the literature are shown in Table 1.

The downward and upward longwave radiation flux
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TABLE 1. Typical values of cloud absorption.

Cloud type j

High cloud
Middle cloud
Low cloud other than cumulonimbus
Cumulonimbus

0.20
0.56
0.59
0.95

FIG. 2. Cloud absorption j series of semihourly measurements in
northwestern Spain (Galicia) obtained from the Meteosat and con-
sisting of 25 000 points of data (approximately 1.5 years). The time
series begins on August 1995, where day 1 is 1 Jan 1995.

are calculated from a formulation given by Idso and
Jackson (1969)1:

QLD 2 QLU 5 s({F↓[1 2 j(t)] 1 j(t)} 2 ),4 4T Ta G

(12)

where the downward longwave irradiance F↓ is given by

F↓ 5 1 2 0.261 exp[27.77 3 1024 (273.15 2 Ta)2],
(13)

and Ta is determined at Stevensen screen height (1.5 m).
Finally, QH and QE are calculated as

QH 1 QE 5 2ru*(Cpu* 1 Ly q*). (14)

2) OCEAN–ATMOSPHERE HEAT BUDGET

A formulation given by Portela and Neves (1994) is
used to compute heat exchanges across the water sur-
face, neglecting the bottom heat flux and other minor
sources and sinks. Similar formulations have been the
subject of several papers in the literature (e.g., Orlob
and Marjanovic 1989; Blanke and Delecluse 1993). The
heat fluxes in this formulation also depend on the cloud
absorption parameter j.

The time rate of change of water surface temperature
TW is determined by

]T 1W 5 (Q 1 Q 1 Q 1 Q 1 Q ), (15)S A W E H]t r c Hw w

where heat fluxes are given by the following set of
equations:

QS 5 S AS[1 2 0.65j2(t)](1 2 aW) cosZ, (16)

where the albedo of the water surface aW is supposed
to depend on the solar elevation as aW 5 20.0139 1
0.0467 tanZ.

25 2 6Q 5 0.909 3 10 s[1 1 0.17j (t)]T , (17)A a

4Q 5 20.97sT , (18)W W

and

2(a 1 bV )(e 2 e R ), if (e 2 e R ) . 01 sw sa h sw sa hQ 5E 5 0 if (e 2 e R ) # 0,sw sa h

(19)

1 See also Prata (1996) for a review of several other parameteri-
zations.

where V1 is the wind speed calculated in the first level
over the sea surface, a 5 0.075 W m22 Pa21 and b 5
0.03 J m23 Pa21 are constants of the wind function, and
esw and esa are the saturation vapor pressure at the water
temperature and at the air temperature (Pa), respectively.
The saturation pressure is given by

17.5t
e 5 612 exp , (20)s 1 2241 1 t

where t is the temperature (8C). Finally the sensible heat
flux QH is calculated as

QH 5 2g(a 1 bV 1)(TW 2 Ta). (21)

e. Nonlinear prediction

Equations (1)–(21) are used to forecast the meteo-
rological conditions 24 h in advance and a continuous
set of values of j must be provided in order to close
the model. We have collected a time series of values of
j during a year and a half from semihourly Meteosat
infrared images of the region of interest in order to
predict j (Fig. 2). We obtain a single average value of
the cloud cover over the area of interest (northwestern
Spain) from these images. Values range from 0 to 1,
where j 5 1 means that no radiation is emitted at the
surface. For clear skies, the stored value is close to zero;
intermediate values depend on cloud thickness and wa-
ter phase and content. Values of j(t) could also be con-
sidered to depend on x and y, but this would require
higher-precision satellite images than are available from
Meteosat. Furthermore, the noise in the time series in-
creases with a finer image resolution, which decreases
the precision of the nonlinear forecasting method de-
picted below.

In the following, the cloud dynamics are supposed to
belong to the category of dissipative system dynamics,
which can reveal dynamics with strange attractor struc-
ture. The Lyapunov exponents determine how far into
the future one can make a successful forecast, and the
number of variables needed to make the prediction is
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governed by the fractal dimension (Grassberger and Pro-
caccia 1983; Wolf et al. 1985). The general nonlinear
prediction method reconstructs the strange attractor
from the set of data in a minimum embedding space
dictated by the correlation fractal dimension and then
predicts the future using a local forecasting function
computed from the attractor (Farmer and Siderowich
1987; Casdagli 1989; Sugihara and May 1990; Abar-
banel et al. 1990; Abarbanel et al. 1993; Abarbanel
1996). Takens (1981) has proven that, after embedding,
and if the embedding dimension m and time delay t are
chosen appropriately, there exists a smooth map F such
that

jn1T 5 F(Jn), (22)

where Jn is a vector of data points defined by

Jn 5 [jn, jn1t , . . . , jn1(m21)t ], (23)

n is the number of data points in the time series, and T
is the forecasting time.

The meaning of the theorem is that, under some gen-
eral conditions, the orbit followed by Jn in this m-
dimensional embedding space will differ from the actual
solution of F(Jn) in Eq. (22) only by a smooth change
of coordinates. The most common solution of Eq. (22)
is to compute the Jacobian of the strange attractor in
the vicinity of a target point and then use it to predict
the future of that point. Typically one finds two to five
times the minimum number of nearest neighbors k need-
ed to compute the Jacobian and makes a least squares
fit using the nearest neighbors and their future iterates
to compute the prediction function F. This must be re-
peated for every target point. The procedure consists of
the following steps.

R Choose an embedding dimension m, an embedding
delay t , and a forecasting time T (see appendix A).

R Choose a vector J i by using Eq. (23).
R Find the k nearest neighbors Jj of J i using the Eu-

clidean distance.
R Order the neighbors from closest to farthest and find

an affine model of the following form:

m

j ø a 1 a j , l 5 1, . . . , k,Oj( l)1T 0 n j( l)2(n21)t
n51 (24)

where j j(l ) is the jth coordinate of the lth neighbor of
Ji, and the a0, . . . , am are the parameters of the
model, computed by ordinary least squares.

To evaluate the accuracy of the nonlinear predictions,
the normalized root-mean-square error (rmse) (Farmer
and Siderowich 1987) is used:

1/22 [j (i) 2 j(i)]O pred 
i E 5 , (25)

2 [j(i) 2 j]O
 i

where jpred(i) is the predicted value of the measured j(i)

24 h later and j is the mean of the time series during
the forecasting period of time. If E 5 0, the predictions
are perfect; E 5 1 indicates that the performance is no
better than a constant predictor jpred(i) 5 j .

3. Results

In the following, we apply the chaotic analysis de-
scribed in the previous section and appendix A to the
cloud absorption data to achieve 1) an estimation of the
correlation dimension for determining the embedding
dimension m, 2) an estimation of the largest Lyapunov
exponent, and 3) the forecasting of cloud absorption
from Eq. (24) for different days.

Later, using the predicted values of cloud absorption,
the hydrostatic meteorological model is run, and the
obtained results are compared with real meteorological
data obtained from nine meteorological towers and a
one Remtech PA-3 sodar located in the area of simu-
lation. Finally, the sensitivity of the model to the cloud
absorption parameter is analyzed in terms of the ability
of the meteorological model for plume dispersion fore-
casting.

a. Chaotic analysis of the experimental time series

Stationarity is a necessary condition when the time
series corresponds to the dynamic evolution of a strange
attractor. Therefore, testing for stationarity should nec-
essarily be the first step in any data analysis. Unfortu-
nately, although a precise asymptotic definition of sta-
tionarity exists, there is no clear and unambiguous meth-
od for applying that definition in real finite time series.
When applying nonlinear methods to time series, the
problem becomes even more complicated since from a
practical point of view, one must now be concerned
explicitly with time variation of more subtle, nonlinear
properties of the series (Manuca and Savit 1996). There
is a significant body of literature on nonstationary tests
(see, for some recent examples, Isliker and Kurths 1993
and Theiler and Eubank 1993) that often deals with the
division of the time series into several windows where
a common statistical property is measured and compared
among the different divided parts of the series. Here,
we test the stationarity of our series by plotting in Fig.
3 the probability density function of the first 20 000 and
the full set of 25 000 points. Note that there is no sig-
nificant time variations in that quantity. On the other
hand, at least 1 year of data points should be taken for
the test in order to guarantee the stationarity of the cloud
absorption time series under investigation.

The chaotic character of the time series is revealed
by the broadband form of the power spectrum (Fig. 4).
Our results suggest that the time evolution of our data
is governed by a strong deterministic component. Al-
though the high-frequency part of the spectrum is dom-
inated by the daily frequency w1 5 1/24 h21, it is also
possible to observe a continuous band of frequencies
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FIG. 3. Evidence of stationarity of the full time series.
FIG. 5. The autocorrelation coefficient for the full series, showing

evidence of ‘‘recurrence’’ after 1 year.

FIG. 6. Correlation function [Eq. (27)] vs distance r for different
embedding dimensions m and time delay t 5 25 h for the full time
series.FIG. 4. Power spectrum of the full series.

that departs from the low-frequency part of the spec-
trum; this is where the annual frequency (w0 5 1/8760
h21) of our data lies, which forms the large ‘‘sine-wave’’
variation observed in Fig. 2. So, the intermediate range
of frequencies fits to the form P(w) } 1/wa, with a ø
1.6, which could lead to the conclusion that our data
contains a strong colored noise component (Osborne and
Provenzale 1989). This is also corroborated by the fact
that the autocorrelation coefficient A(t) of our series;
that is,

N1
A(t) 5 (j 3 j )O i i1tN i51

and
N1

j 5 j 2 j , (26)Oi i iN i51

does not decay very rapidly (Fig. 5), which also supports
the idea that our data contains a noise component (Boun-
tis et al. 1993).

Figure 6 presents the estimated correlation integral
C(r; m) for m up to 15 with clear scaling C(r; m) ø
rn(m) for low values of distance r in phase space. The
slope n(m) saturates as m increases at the value n 5
5.4. This result was found to be invariable for time delay
t 5 25–350 h. For larger time delays, a knee behavior
appears in the plot of correlation integrals, which makes
it difficult to calculate a proper correlation dimension
n. If we compare the obtained value of the correlation
dimension n with the value one expects from fractal
(colored) noise (Osborne and Provenzale 1989), nFN 5
2/(a 2 1), with a 5 1.6, nFN 5 3.3, which is not close
enough to the measured value of n 5 5.4 for one to
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FIG. 7. Dependence of the largest Lyapunov exponent lmax on the
embedding dimension m and time delay t [N 5 20 000, evolution
step 5 10, SCALMX 5 10, SCALMN 5 0, see (Wolf et al. 1985)
for details].

FIG. 8. Forecast values of the cloud absorption j (dashed line) from
10 to 20 July 1996 (days 556–566) compared with the measured
values obtained from infrared images provided by the Meteosat (con-
tinuous line). The used values of the embedding dimension m and
time delay t are shown in the table below the figure for each day.

claim that the full time series is dominated by colored
noise. On the other hand, according to the embedding
theory, the saturation value of the slope in the scaling
region, as m increases, supports the existence of a low-
dimensional attractor2 with fractal dimension D 5 5.4.
Thus, the minimum time series length (Nmin) calculated
from Eq. (30) (see appendix A) is satisfied as the total
length of the time series, which we have used for the
results presented here, is N 5 25 000.

The chaotic (sensitive to initial conditions) character
of the dynamic flow in the attractor is demonstrated by
Fig. 7, which shows the estimation of the largest Lya-
punov exponent lmax as a function of the embedding
dimension m and the time delay t . When the dimen-
sionality of the embedding space is reduced, lmax is
expected to increase for a deterministic system because
the attractor occupies a larger portion of the available
space (Abarbanel et al. 1990; Abarbanel et al. 1993;
Abarbanel 1996). Indeed, reducing the embedding space
dimensions to three leads, in our case, leads to a sig-
nificant increase in the Lyapunov exponent for any value
of the time delay. Note that this behavior of lmax is quite
distinct from what is observed for a random signal
(Bountis et al. 1993). On the other hand, when t and
m increase, the attractor tends to occupy a small portion
of the available space, which gives rise to very small
Lyapunov exponents (around zero) that do not appear
in the contour plot. Then, the greatest positive values
of lmax with physical meaning are found for middle
values of m and values of t from about 40 to 80 h.

2 It is interesting to note that the correlation dimension of the time-
differenced series does not vary significantly from that of the original
series, which confirms the deterministic nature of our data, even
though it contains a small noise component (Bountis et al. 1993).

The analysis of the cloud absorption time series
showed the chaotic characteristics of our data, so we
were able to construct a predictor map for our series
using the method described in section 2e. This method
forecasts the daily amount of cloud absorption 24 h in
advance at the As Pontes power plant from the time
series shown in Fig. 2. Then the resulting forecast is
used as an input to the meteorological model that is
used to calculate the wind and temperature fields in the
area of interest. Here, in this study, we have selected
11 days, from 10 to 20 July 1996, for research purposes.
During these days, middle clouds and strong tempera-
tures occurred in northwestern Spain. Figure 8 shows
the predicted values of j compared with the measured
values obtained from the Meteosat, and the values of m
and t used for the forecasting are shown in the table
below the graph. Observe that those values agree with
the arguments derived above for obtaining the maximum
Lyapunov exponent. Most of the large oscillations in
the time series were reproduced by our nonlinear fore-
casting method. For the 11 days selected for this study,
the rmse of the cloud absorption forecasting [Eq. (25)]
was lower than 25%.

b. Meteorological results

Cloud absorption forecasts were used as inputs to the
hydrostatic meteorological model described earlier to
obtain wind, potential temperature, and specific humid-
ity fields for the area shown in Fig. 1.

Figure 9 shows the predicted and observed 10-m
height wind speed, wind direction, and surface temper-
ature measured at a meteorological station located at the
As Pontes power plant (center of the grid) for 14 July,



1438 VOLUME 37J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 9. Predicted (dots) and measured (line) wind speed, wind direction, and 10-m surface
temperature at A Mourela (center of the grid) for 14 July 1996.

and Fig. 10 shows the results for 14 December 1996.
The measurements are obtained at the meteorological
towers every 5 min, while the model provides half-
hourly averaged data that could explain some of the
differences observed, especially those between the mea-
sured and predicted values of the wind speed. So al-
though the forecasts for 14 July were correct both for
temperature and wind fields, for 14 December, both
wind speed and temperature approached the correct val-
ues during the forecast period, while the predicted wind
direction maintained a constant difference from that
measured at the meteorological station.

Measured temperature profiles provided by sodar
were in agreement to the numerical predictions for both
days (Figs. 11a,b). Note that the model reproduces the
variations of temperature with height both under stable
and convective situations and is in good agreement with
the experimental data. In particular, the profile for 14
December (Fig. 11b) shows the development of the
mixed layer below about 600 m, which was measured
by the sodar around 1200 LST. This effect was probably
due to cloud cover, which averaged about 70% that day.

Finally, surface temperatures predicted by the mete-
orological model for the 11 selected days (using the
previously calculated cloud absorption values) are com-
pared with observed values in Fig. 12 for two different

hours: night (0400 LST) and day (1400 LST). The mea-
surements are from A Mourela, F-7, and E-3 meteo-
rological stations (see Fig. 1). Figure 12 shows a good
agreement between numerics and measurements.

c. Plume dispersion forecasting

The importance of cloud absorption in meteorological
modeling was highlighted for SO2 ground-level con-
centration (GLC) forecasting. Thus, in the following the
predicted values of j(t) are modified in order to test the
importance of this parameter for plume dispersion fore-
casting. Calculations were performed after modifying
the predicted values of j(t) in Eqs. (11)–(21) and re-
leasing 20 000 Lagrangian particles3 from the 350-m
stack at the As Pontes power plant at a rate of 20 par-
ticles per iteration. Figure 13 shows the vertical plume
profile simulated for 1700 LST 14 July 1996. The par-
ticle model predicts the plume impact on the ground,
which on that day was especially important about 20
km from the chimney.

3 Here, we have followed the parameterizations given by Fernández
et al. (1994) for the particle model and Zhang and Ghoniem (1994)
for the plume rise calculations.
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FIG. 10. Same as Fig. 9 but for 14 December 1996.

Figures 14a,b show the predicted SO2 ground-level
concentration obtained for two different days in July
and December, sunny and cloudy, respectively, in com-
parison with measurements (continuous line) obtained
at GLC stations located within the area of simulation
in the direction of the plume [F-7, F-6, and F-4 (see
Fig. 1)]. Different sets of time series j(t) were used for
comparison. The original values of j(t) were modified
in two ways: 1) by adding zero mean Gaussian noise
and dispersion e or 2) by adding a constant value.

In the first case (see the dashed lines around the solid
one), the main GLC peaks were approximately repro-
duced for both days independent of the value of e [e ∈
(0, 0.2)]. However, when a constant value of 0.2 was
added, the maximum of concentration was much lower.
Here, the mixed-layer depth zi is lower for higher values
of cloud absorption, which favor a decrease of GLC
because the particles are not trapped by this convective
structure that develops during the day.

When no cloud absorption was considered in mod-
eling the heat budget, j 5 0 in Eqs. (11)–(21), the
amount of predicted GLC was much higher than the
measured values. We also used a set of forecast cloud
absorption values provided by the Spanish National
Weather Service, each 6 h, but it was not very succesful
because the resolution was poor for the relatively small
area, and they did not account for the 24-h periodicity

that is an essential part of the cloud cover and the bound-
ary layer dynamics.

4. Summary and conclusions

A nonlinear forecasting method has been applied suc-
cessfully to the prediction of cloud absorption 24 h in
advance. The method is based on the reconstruction of
a chaotic strange attractor and the construction of a pre-
dictor map using Farmer and Siderowich’s (1987) and
Casdagli’s methods (1989) with piecewise functions for
a time series of cloud absorption percentages obtained
from the Meteosat. The results were used by a hydro-
static meteorological model for daily prediction of a
plume transport from a power plant. Prediction of plume
transport combines the meso-b meteorological model
and a nonreactive Lagrangian adaptive plume model
(Ludwig et al. 1989) to obtain a complete air pollution
forecast for 12–36 h in advance. The prediction model
uses meso-a numerical predictions from the Spanish
weather service for boundary conditions. Predictions
can be obtained in approximately 3 h on a medium-
sized workstation.

Our cloud absorption time series has passed a number
of tests for a low-dimensional chaotic attractor that con-
firm that the presence of noise; although noise exists,
it does not overwhelm the intrinsic nature of its deter-
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FIG. 11. Predicted (dots) and sodar-measured (line) temperature profiles for (a) 14 July and (b)
14 December 1996.

FIG. 13. Modeled vertical plume profile for 1700 LST 14 July
1996 projected onto a plane.

FIG. 12. Comparison of predicted and observed surface tempera-
tures at three different meteorological stations: A Mourela, F-7, and
E-3 for 0400 and 1400 LST.

ministic dynamics. The results presented in this paper
support this idea. Clearly, the low-frequency part of the
power spectrum shown in Fig. 4 containing the daily
24-h period plays an important role in the low-dimen-
sional, deterministic appearance of the dynamics. Nev-
ertheless, as pointed out by Lorenz (Lorenz 1991), ‘‘the
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FIG. 14. Time evolution of ground-level SO2 concentration (GLC)
measured (continuous line) and predicted (dashed lines) for (a) 14
July and (b) 14 December 1996.

atmosphere might be viewed as a loosely coupled set
of lower dimensional subsystems,’’ we must correlate
our cloud absorption time series with existing records
of wind velocity, air pressure, humidity, etc., in north-
western Spain where the measurements were taken, to
identify the fundamental variables determining the dy-
namics and to find the other sources of determinism.

On the other hand, the nonlinear forecasting method
presented here reveals the possibilities of short-term pre-
dictions of atmospheric parameters whose dynamics
would make it very difficult to obtain a prognostic equa-
tion by other means.

Finally, we wish to emphasize that the whole system
of forecasting models that we have described has been
successful in forecasting the most important plume im-
pacts around the As Pontes power plant. These models
have been run routinely to provide forecasts under a
large variety of conditions since 1995.
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APPENDIX A

Nonlinear Tools for Chaotic Time Series Analysis

The reconstructed phase space given by Eq. (23) is
used to forecast the solution of Eq. (22) for a given point
in the strange attractor Ji during a period of time T.

In principle t is arbitrary as long as the values of jn

and jn1t in Eq. (23) are not highly correlated. If t is
too small, the coordinates become singular so that jn ø
jn1t . If t is too big, chaos makes jn and jn1t causally
disconnected by amplification of noise. In practice, t is
chosen by trial and error, searching for optimal results.
Other methods for estimating t have been suggested by
Fraser and Swinney (1986); they require that the mutual
information and its first minimum be determined. When
the embedding dimension increases, the method requires
the estimation of saturation values of the marginal re-
dundancy, which is a means of how well a particular
value in a sequence can be predicted from m of its
predecessors; however, this method enhances the noise
effects. Another recent method (Lai et al. 1996) pro-
poses to estimate an upper bound for the proper time
delay, but it is highly affected by noise. We should stress
here that there is probably no unique optimal choice of
delay, but a compromise to avoid choosing so small a
time delay that the attractor collapses along the line jn

5 jn1t 5 . . . 5 jn1(m21)t , but not so large that the
attractor tends to localize in only a small portion of the
available space (Sauer et al. 1991).

Now, it is well known that Whitney’s embedding the-
orem (Whitney 1936; Hirsch 1976) guarantees that a d-
dimensional manifold can be smoothly embedded in (2d
1 1)-dimensional space (i.e., without crossing itself ).
Clearly, if the dimension d of the embedding space is
too small, the orbit Jn tends to completely fill the avail-
able d-dimensional space. On the other hand, if m in-
creases beyond the embedding dimension m, some of
the geometric properties of the dynamics are expected
to remain unchanged for d $ m.

One of such geometric property is the correlation di-
mension of our data n, which can be measured by the
Grassberger–Procaccia method (Grassberger and Pro-
caccia 1983) by means of the correlation integral C(r;
m), which is given by the relation

N1
C(r ; m) 5 lim Q3r 2 \J 2 J \4, (A1)O j i2NN→` i, j51

where Q(a) is the Heaviside function and \Jj 2 J i\
denotes the Euclidean norm for some r . 0 between
the states J j and J i in the m-dimensional reconstructed
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space given by Eq. (23). The correlation integral C(r;
m) is expected to scale as a power of the radius r,

C(r; m) } rn(m) , as r → 0. (A2)

The slope of the curve of log[C(r; m)] versus log(r),
that is,

d{log[C(r ; m)]}
n(m) 5 lim , (A3)

d [log(r)]r→0,m→`

is called the correlation dimension. Now, if our data lie
on an attractor and the dynamics is characterized by a
deterministic chaos, n is expected to be a (close) lower
bound of the fractal (Hausdorff ) dimension D of the
attractor, that is, n # D (Schuster 1988). From the pre-
viously mentioned Whitney’s theorem, we can find a
smooth embedding of the attractor as m 5 2D 1 1.

According to a formula proposed by Bountis et al.
(1993), the number N of data points used in the cal-
culations should satisfy

N $ Nmin, Nmin 5 10210.4D. (A4)

Other possible lower bounds for N are also described
in Nerenberg and Essex (1990).

Finally, to complete the chaotic analysis of the ex-
perimental data the largest Lyapunov exponent must be
calculated; that is, the largest rate of divergence of ini-
tially nearby trajectories under time evolution in an m-
dimensional embedding space. We used the algorithm
proposed by Wolf et al. (1985), although other methods
can be found in the literature (Sano and Sawada 1985;
Eckmann et al. 1986; Zeng et al. 1991). A positive
Lyapunov exponent, l, means that there exists a direc-
tion in the phase space along which the distance of two
neighboring trajectories grows exponentially. In other
words, there is at least one direction in phase space along
which the orbits exhibit unstable (chaotic) behavior.

APPENDIX B

Notations

U West–east wind component (m s21)
V South–north wind component (m s21)
W Vertical wind component (m s21)
u Potential temperature (K)
q3 Specific humidity (kg kg21)
p Scaled pressure
c Potential temperature lapse rate at zi

g Gravity acceleration (9.8 m s21)
S Effective solar constant
AS Absorption by atmospheric gases
Z Solar zenith angle
aS Albedo of ground surface
aW Albedo of water surface
QS Solar radiative flux
QLD Downward longwave radiation
QLU Upward longwave radiation
QH Sensible heat flux from surface to atmosphere

QE Latent heat flux
QW Water surface radiation
QA Atmospheric radiation over sea surface
rs Density of soil
cs Heat capacity of soil per unit mass
ks Thermal diffusivity of soil
Y 24 h
TM Deep soil temperature (K)
rw Density of water (1000 kg m23)
cw Specific heat of water (4100 J kg21 K21)
Ly Latent heat of vaporization of water
g Bowen’s constant (62.7 Pa K21)
s Stefan–Boltzmann constant (5.67 3 1028 W m22

K24)
H Mean depth of the sea coast (m)
Rh Relative humidity (0 # Rh # 1)

REFERENCES

Abarbanel, H. D. I., 1996: Analysis of Observed Chaotic Data.
Springer-Verlag, 288 pp.
, R. Brown, and J. B. Katke, 1990: Prediction in chaotic nonlinear
systems: Methods for time series with broadband Fourier spectra.
Phys. Rev., 41A, 1782–1807.
, , J. J. Sidorowich, and L. Sh. Tsimring, 1993: The analysis
of observed chaotic data in physical systems. Rev. Mod. Phys.,
65, 1331–1392.

Arking, A., 1964: Latitudinal distribution of cloud cover from Tiros-
III photographs. Science, 143, 569–572.

Berkowicz, R., and L. P. Prahm, 1982: Evaluation of the profile meth-
od for estimation of surface fluxes of momentum and heat. At-
mos. Environ., 16, 2809–2819.

Blackadar, A. K., 1979: High-resolution models of the planetary
boundary layer. Adv. Environ. Sci. Eng., 1, 50–85.

Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic
Ocean simulated by a general circulation model with two dif-
ferent mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388.

Bountis, T., L. Karakatsanis, G. Papaioannou, and G. Pavlos, 1993:
Determinism and noise in surface temperature time series. Ann.
Geophys., 11, 947–959.

Businger, J. A., J. C. Wyngaard, T. Izumi, and E. F. Bradley, 1971:
Flux–profile relationships in the atmospheric surface layer. J.
Atmos. Sci., 28, 181–189.

Casdagli, M., 1989: Nonlinear prediction of chaotic time series. Phys-
ica D, 35, 335–356.

Deardorff, J. W., 1974: Three-dimensional numerical study of the
height and mean structure of a heated planetary boundary layer.
Bound.-Layer Meteor., 7, 81–106.
, 1978: Efficient prediction of ground surface temperature and
moisture, with inclusion of a layer of vegetation. J. Geophys.
Res., 83, 1889–1903.

Eckmann, J. P., S. O. Kamphorst, D. Ruelle, and S. Ciliberto, 1986:
Lyapunov exponents from time series. Phys. Rev., 34A, 4971–4979.

Elgar, S., and G. Mayer-Kress, 1989: Observations of the fractal
dimension of deep- and shallow-water ocean surface gravity
waves. Physica D, 37, 104–108.

Enger, L., 1990: Simulation of dispersion in moderately complex terrain.
Part A: The fluid dynamic model. Atmos. Environ., 24A, 2431–2446.
, D. Koracin, and X. Yang, 1993: A numerical study of the boundary
layer dynamics in a mountain valley. Part I: Model validation and
sensitivity experiments. Bound.-Layer Meteor., 66, 357–394.

Farmer, J. D., and G. G. Siderowich, 1987: Predicting chaotic time
series. Phys. Rev. Lett., 59, 845–848.

Fernández, J. F., L. Cremades, and J. M. Baldasano, 1994: Dispersion
modelling of a tall stack plume in the Spanish Mediterranean
coast by a particle model. Atmos. Environ., 11, 1331–1341.
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